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The goal of this chapter is to outline the ways in which formal methods can help

expand the array of evidence that can be brought to bear on the empirical evaluation of

theories of natural language syntax. Since bringing any kind of evidence to bear on a

theory naturally requires relevant linking hypotheses, expanding the range of useful

evidence amounts to expanding the range of linking hypotheses that can be used to expose

syntactic hypotheses to the empirical spotlight. This requires both formulating new linking

hypotheses and ensuring that the underlying theory to be tested takes a form that these

linking hypotheses can engage with. The topic of this chapter, then, is the use of linking

hypotheses that require that the underlying theory takes the form of an explicit and

self-contained formal grammar. Put differently, it is an overview of the benefits to be had,

in the form of greater empirical testability, by formulating one’s syntactic theories in this

manner. And in keeping with the section of the handbook in which this chapter appears,

the linking hypotheses considered here will serve to link syntactic theories to

sentence-processing observations.1

1See Levy (2013) and Hale (2017) for reviews that provide a broader historical context for many of the
topics discussed here, with less focus on the goal of testing hypothesized grammars.
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I will discuss two classes of linking hypotheses, those based on

information-theoretic complexity metrics (Section 2) and those based on

automata-theoretic models of parsing (Section 3). Although both require that the

underlying grammatical theory being tested takes the form of some formal grammar, they

differ in what further details they require that the grammar furnish. The use of

information-theoretic complexity metrics (for example, surprisal or entropy reduction)

requires some probability distribution to be defined over the expressions generated by the

grammar, but little more, and broadly speaking this tends to amount to a lower “price of

entry” than the automata-theoretic approaches impose. The automata-theoretic

approaches work at a lower level of abstraction, and require supplementing the grammar

with an explicit parsing algorithm (for example, top-down or bottom-up context-free

parsing); the payoff for the extra effort involved is arguably that the candidate

explanations provided by this approach have an additional causal, mechanistic character.

I will mostly restrict attention to simple, linguistically-inadequate kinds of grammars

(e.g. finite state machines and context-free grammars) to illustrate the different kinds of

linking hypotheses, and what a grammar must be like in order to mesh with these linking

hypotheses. In Section 4 I will briefly outline how something like contemporary minimalist

syntax can be put into a form that allows these linking hypotheses to engage with it, and

provide pointers to relevant research along these lines.

In recent years, it is the information-theoretic approaches that have most frequently

and fruitfully been combined with sophisticated grammars of the sort that syntacticians

would find the most familiar. This is not due to any fundamental differences in

compatibility, but rather simply due to the higher price of entry for the automata-theoretic

methods and the extent of our current knowledge. As our understanding improves it is

likely that automata-theoretic methods will more frequently be combined with more

linguistically-realistic grammars.

Given the focus on foundational (and hopefully widely-applicable) concepts, there
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will be little or no discussion of either the finer points of contemporary syntax or any

empirical details of recent experimental work in psycholinguistics. Of course the broader

enterprise that this chapter aims to contribute to will likely get nowhere if these specifics

are always left aside as they are here. The “back to basics” approach that I adopt is based

on a hunch that these foundational ideas, as opposed to specifics, are the ones that are

under-represented and under-utilized in current discussions.2

1 Linking hypotheses, complexity metrics, and the

general form of grammar-testing arguments

Most frequently, a grammar is empirically tested by considering the sound-meaning

pairings that it generates. The usual way in which a grammar “pairs up” sounds with

meanings is by generating a collection of more abstract syntactic objects — in neutral

terms, a structural description, but typically something like a tree — each of which has a

certain sound/pronunciation and a certain meaning. One way to go about bringing new

kinds of observations/evidence to bear on hypothesized grammars is to follow this pattern

and seek ways for structural descriptions to be connected to the relevant new kinds of

observables, in something like the way they are usually connected to sounds and meanings.

For example, a particular structural description can “have” a certain degree of complexity

in much the same way that it “has” a sound and a meaning.

To be concrete, let us say that for any structural description t, its sound is PHON(t)

and its meaning is SEM(t). Then the usual “linking hypotheses” (although it is unusual to

call them that) which we use to test a particular posited mental grammar are something

roughly like the following (ignoring many subtleties, such as ambiguities):

(1) A speaker encountering the string PHON(t) will latch onto the meaning SEM(t).

2I hope it goes without saying that this hunch could be wrong (but I include this footnote just to be
sure).
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(2) A speaker wishing to express the meaning SEM(t) will produce the string PHON(t).

To expand the range of relevant evidence beyond sound-meaning pairings, then, we can

consider adding other “lenses onto” the structural description t beyond the existing PHON

and SEM.3 If we introduce some additional function F , such that F (t) is some measure of

the complexity of t, and accompany it with a linking hypothesis such as

(3) A speaker encountering the string PHON(t) will experience perceptual difficulty

proportional to F (t).

then we have new ways to find evidence for or against the structural descriptions generated

by any particular grammar. In particular, it may be that two grammars are

indistinguishable when viewed through the lenses of PHON and SEM (via the two initial,

conventional linking hypotheses above), but make different predictions about the cases

where speakers will experience greater perceptual difficulty (as measure by reading times,

or eye-tracking patterns, or whatever).

To take one exceedingly simple example, Miller and Chomsky (1963) suggest that

“One rough measure of structural complexity that we might use . . . is the node-to-terminal

node ratio. . . . This number measures roughly the amount of computation per input

symbol that must be performed by the listener.” They illustrate with the two trees in (4).

(4) a.
A

C

dc

B

ba

b.
A

dcba

3Arguably we already make use of others, such as functions which measure the degree of syntactic well-
formedness, or degree of semantic anomaly, etc. And there’s no reason the logic here should be restricted to
measures of “complexity”, it’s just been a useful place to start.
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Both have four terminal nodes, but (4a) has three non-terminal nodes whereas (4b) has

only one. The ratio of nodes to terminal nodes is therefore 7
4

for (4a), but 5
4

for (4b). We

can therefore imagine hypothesizing that a grammar that posits (4a) as the structural

description underlying the string ‘a b c d’ will predict greater processing load than a

grammar that posits (4b) instead.4 This illustrates the general strategy that we can pursue

in order to increase the “empirical payload” of a grammatical theory.

A metric such as node ratio, which produces a single number for a complete sentence

(actually, for a complete structural description), is a good fit for certain relatively

coarse-grained experimental measures of processing load that were used in the early days,

such as whole-sentence reading times or accuracy in repeating back a given sentence. But a

richer and finer-grained goal would be to identify a metric whose predictions can line up

with the observations from more modern experimental paradigms such as self-paced

reading, eye-tracking and electrophysiological techniques, where we obtain measures of

difficulty at particular points in a sentence. Concretely, rather than F (t) being a single

number, F (t) should be some sequence of numbers, one for each word (or other appropriate

region), which are taken as measures of the complexity of the work triggered by

encountering that particular word of the sentence. I will call a measure like this an

incremental complexity metric.

2 Information-theoretic complexity metrics

One well-known class of incremental complexity metrics are those based on formal concepts

from information theory.5 Broadly speaking, these ideas relate to degrees of uncertainty

about future events, and to the way such uncertainty changes in the face of new

information. The common intuition behind these complexity metrics is that the amount of

4To operationalize this, we would need either an additional assumption about the exact relationship
between node ratio and some observable measure (e.g. reading time is 100ms times node ratio), or a separate
sentence which has a lower node ratio than ‘a b c d’ does according to one grammar but has a higher node
ratio than ‘a b c d’ according to the other grammar.
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work involved in “taking on board” some new information will be some function of the

effect that this new information has on uncertainty — for example, the effect that coming

to know that the third word of some sentence is ‘cat’ has on a comprehender’s uncertainty

about what the sentence is.

As this initial description might suggest, these complexity metrics are very general

and abstract. In a sense they don’t say things about what a comprehender does with this

information, only how this new information relates to the information the comprehender

already had before. In particular, there is nothing said about how information is

represented (either the new information or the previously existing information) or how

those representations are transformed; but the common assumption that sentences are

processed incrementally corresponds roughly to an assumption about which information is

represented and which points in time.6

This high level of abstraction has its benefits and its drawbacks. A drawback is the

way they work at a distance from the specifics of the representations and algorithms, as

just mentioned. This has the consequence that even when we find a particularly good fit

between some collection of data and a theory based on these linking hypotheses, this does

not constitute evidence for or against any particular set of underlying nuts-and-bolts

mechanisms (of the sort that we will turn to in Section 3). Having said that, a main aim of

the discussion that follows is to demonstrate that it still can constitute evidence for or

against particular grammars. The flip side of this drawback is the advantage that, since a

theory incorporating one of these complexity metrics only narrows down our live

possibilities by a relatively modest degree, the price of entry for submitting a grammar to

testing via these metrics — in terms of technical work and theoretical commitments — is

accordingly also modest. A second advantage is that there is the possibility that we might

5The original work on information theory is Shannon (1948). The very early chapters of the textbooks by
Cover and Thomas (2006) and MacKay (2003) cover everything that is relevant here. Manning and Schütze
(1999, pp.60–78) provide a brief introduction in the context of work on language.

6One might say that these metrics refer only to what Marr (1982) called the “computational level” of
description, the most abstract of the three.
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find empirical support for such metrics that is genuinely independent of their use as probes

into linguistic questions. At least to the extent that we suppose that there are

domain-general facts of the matter about how the mind relates new information to old, the

plausibility of these metrics can be independently assessed to a degree that more concrete,

language-bound linking hypotheses cannot.

The most notable examples of these complexity metrics are surprisal (Hale, 2001;

Levy, 2005, 2008) and entropy reduction (Hale, 2003, 2006).7 Other variants are also easily

imaginable. These metrics differ in exactly how they use information-theoretic concepts

about uncertainty to formulate a measure of when it is that new information takes a lot of

work to take on board; put differently, they differ in exactly what kind of change in

uncertainty they take to be indicative of “high workload”.

For the purposes of the current chapter, however, those differences are not

particularly consequential. The reason for this is that the requirements they impose on

what a grammar must look like remain essentially the same: it must be possible to define a

probability distribution over the grammar’s possible derivations, and to update this

distribution according to new partial information about a sentence being observed. The

focus here will be on these requirements. Satisfying these is what allows a grammar to be

“plugged into” these complexity metrics.

For illustration, I will demonstrate this “plugging in” by taking surprisal as a

representative example of an information-theoretic complexity metric. This choice is purely

one of convenience: it requires slightly less mathematical groundwork than the alternatives.

The focus here will be squarely on the way either one of these metrics can be used to

formulate a linking hypothesis that brings a hypothesized mental grammar into empirical

contact with incremental comprehension measures.

7Hale (2016) provides a wide-ranging review that makes the case for preferring entropy reduction over
surprisal; for critiques of entropy reduction see Levy (2005, pp.36–37) and Levy et al. (2013). For empirical
support for surprisal see, among others, Boston et al. (2008), Demberg and Keller (2008), Brennan et al.
(2016) and Smith and Levy (2013); and for entropy reduction, Yun et al. (2015) and Nelson et al. (2017).
Frank (2013) and Linzen and Jaeger (2016) find support for both metrics independently.
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2.1 Surprisal

One well-known example of an incremental complexity metric is surprisal. Generally

speaking, the surprisal at the occurrence of a particular event is large if the event was

unexpected (had low probability), and is small if the event was expected (had high

probability); in the extreme case where there was no alternative but for that particular

event to happen (its probability is one), the surprisal is zero. To adopt surprisal as an

incremental complexity metric for sentence comprehension, the idea is to take each of the

words encountered in a sentence as a separate event, each of which will have its own

surprisal value, and the crucial linking step is to hypothesize that we will see evidence of

greater processing difficulty/complexity (e.g. reading slowdowns) when speakers encounter

words with high surpisal values. We assume that the probability of a word, or the degree to

which that word is expected, may differ depending on what other information about the

sentence the comprehender already has; accordingly, the relevant probabilities are

conditional upon the linearly/temporally preceding portion of the sentence.8 The crucial

probabilities therefore have the general form:

(5) P (Wi = wi | W1 = w1,W2 = w2, . . .Wi−1 = wi−1)

where Wi is the random variable whose corresponding to the event of encountering the ith

word, and wi is the particular word encountered in the ith position. For example, the

probability relevant to calculating surprisal at the word ‘chased’ in ‘the dog chased the cat’

is given in (6).

(6) P (W3 = chased | W1 = the,W2 = dog)

Importantly, note that while these probabilities are probabilities of certain linear

relationships between words, we will see in Section 2.2 that they may calculated on the

basis of (hierarchical) structural descriptions containing these words.

8One could easily calculate surprisal simply based on expectations about individual words without refer-
ence to context, but this would imply, for example, the same surprisal value at the word ‘dog’ in ‘The man
bit the dog’ as in ‘The dog bit the man’, and the same surprisal value at the word ‘fell’ in ‘The horse fell’ as
in ‘The horse raced past the barn fell’.
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The particular function that is applied to a probability such as (6) in order to convert

it to a surprisal value is the negative logarithm:

(7) surprisal at wi = − logP (Wi = wi | W1 = w1,W2 = w2, . . . ,Wi−1 = wi−1)

From here we can formulate a linking hypothesis (cf. (3)):

(8) A speaker encountering the string PHON(t) will, at each word wi, experience greater

perceptual difficulty the greater surprisal at wi is.

For the purposes relevant to this article, the important thing to note about (7) is

simply that it has the effect of turning higher probabilities into lower surprisal values, and

turning lower probabilities into higher surprisal values: if P (X) > P (Y ), then

− logP (X) < − logP (Y ). The particular choice of the negative logarithm function ensures

that surprisal works in accord with certain intuitions about how a measure of information

should behave.9 One example is the extreme case mentioned above, that if P (X) = 1, then

− logP (X) = 0 and so surprisal is zero, in accord with the intuition that no information

has been obtained by observing an event that was certain to happen. A second is that

surprisal values can sensibly be added. If we roll a fair four-sided die and a fair eight-sided

die, then the surprisal at seeing the four-sided die come up on any particular side is

− log 1
4

= 2 and the surprisal at seeing the eight-sided die come up on any particular side is

− log 1
8

= 3. Summing these two surprisal values (2 + 3 = 5) gives the same result as

calculating the surprisal from the perspective of the 32 different joint outcomes that were

possible upon rolling the two dice together: − log 1
32

= 5. This accords with our intuition

that the amount of information obtained by finding out which side came up on the

four-sided die and which side came up on the eight-sided die — or, the degree to which we

are “surprised by” this information — should be the same as that obtained by finding out

which of the 32 joint events occurred. But since the linking hypothesis in (8) relies on just

the qualitative idea that higher surprisal values correlate with greater comprehension

difficulty/load, these numerical details are not particularly significant; the important
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guiding idea is simply that lower (conditional) probabilities correlate with greater

comprehension difficulty/load.

To take a concrete and complete example, suppose we are interested in calculating

word-by-word surprisal values for the sentence ‘John saw it’. To illustrate the division of

labor between the specification of a probability distribution over sentences and the

calculation of surprisal values from those probabilities, for this first example I will suppose

that the comprehenders’s expectations about the sentences he or she might encounter are

simply specified by a finite lookup table, shown in (9). In Section 2.2 I will turn to

considering the case where this specification takes the form of a grammar instead.

(9) 0.4 John ran

0.15 John saw it

0.05 John saw them

0.25 Mary ran

0.1 Mary saw it

0.05 Mary saw them

At the first word, ‘John’, there is no other information about the sentence to

condition upon, so the relevant probability is simply the sum of all the probabilities of

sentences that have ‘John’ as their first word.

(10) surprisal at ‘John’ = − logP (W1 = John)

= − log(0.4 + 0.15 + 0.05)

= − log 0.6

= 0.74

At the second word, ‘saw’, we need to consider probabilities conditioned upon the

fact that the first word of the sentence is already known to be ‘John’; concretely, this

means that we restrict attention to the first three lines of the table in (9), and ask how

9See the references in footnote 5 for much more detailed discussion of the ideas briefly introduced in this
paragraph.
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much of the 0.6 probability mass there lies with sentences that furthermore have ‘saw’ as

their second word. The resulting probability, 0.33, is lower than the relevant probability at

the first word, 0.6; accordingly, the surprisal value is higher here (1.58 vs. 0.74), and

greater comprehension difficulty at this word is predicted.

(11) 0.4 John ran

0.15 John saw it

0.05 John saw them

surprisal at ‘saw’ = − logP (W2 = saw | W1 = John)

= − log
0.15 + 0.05

0.4 + 0.15 + 0.05

= − log 0.33

= 1.58

Similarly, at the third word we restrict attention to the two lines of the table that are

still “in play”. The probability of 0.75 is higher than both of the two previous probabilities,

and so the surprisal value here is lower than both of the two previous surprisal values.

(12) 0.15 John saw it

0.05 John saw them

surprisal at ‘it’ = − logP (W3 = it | W1 = John,W2 = saw)

= − log
0.15

0.15 + 0.05

= − log 0.75

= 0.42

So the adoption of surprisal, and the linking hypothesis in (8), has taken us from the

hypothesized probability distribution in (9) to (what I will take to be) testable predictions

concerning the sentence ‘John saw it’: comprehension difficulty will be greatest at the word

‘saw’ (surprisal 1.58), lowest at the word ‘it’ (surprisal 0.42), and in between at the word

‘John’ (surprisal 0.74).10 The general idea is illustrated schematically in Figure 1. So

surprisal amounts to a way to test the fit of a hypothesized probability distribution with
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some observations or data.

probability distribution
over sentences

predictions about
sentence comprehension difficulty

surprisal plus
linking hypothesis (8)

Figure 1: We can use surprisal to formulate a linking hypothesis which, taken
together with a probability distribution over sentences, produces empirical predictions
about sentence comprehension difficulty.

But via familiar logic, if there are unboundedly many relevant sentence-probabilities,

then a finite mind cannot directly encode all the probabilities in a table like (9). The

probabilities, like the sentences they are associated with, will have to instead be encoded in

some finite system of rules. This system of rules would specify some collection of

“primitive” probabilities (e.g. that the probability of the first word of a sentence being

‘John’ is 0.1, or that the probability of a verb being ‘run’ is 0.2) and recipes for deriving

other “composite” probabilities from those. Independent of the particular numbers

entering into the calculation of sentence’s probability, the structure of such a system of

primitives and recipes constrains the range of probability distributions that can be defined.

A natural way to take grammars to be part of what something like surprisal is testing is to

realize that they amount to a hypothesis about the structure of this system.11

2.2 The role of grammars

The aim in what follows is to illustrate how a grammar can play a role in defining a

probability distribution over sentences; as a result, a grammar will play a role in

10It is a simplification to call these “testable predictions”: there are of course still decisions to be made
about how comprehension difficulty will be measured (e.g. reading times, electrophysiological responses); how
surprisal values are assumed to relate to these measures (e.g. does a twice-as-large surprisal value predict, all
else being equal, a twice-as-large reading time?); whether these surprisal values are assumed to be the sole
contributing factor to these measures or one of a collection of interacting factors; etc. To be more careful we
could perhaps use the term predictor for calculated values like surprisal, and reserve the term prediction for
something more methodologically fleshed-out. But I will gloss over this distinction for ease of exposition.

11This connection is reflected in the terminological overlap between “generative grammar” and “generative
probabilistic model”.
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determining surprisal predictions, which means in turn that empirical tests of surprisal

predictions can provide evidence for or against hypothesized grammars. The machinery

that we have introduced so far is entirely agnostic about the source of the probabilities

that enter into these calculations (as illustrated in Figure 1), and this is what gives metrics

like surprisal the high degree of versatility mentioned in the introduction: surprisal can be

calculated on the basis of probabilities drawn from a finite lookup table as above, or

probabilites defined by a relatively simple grammar (e.g. a collection of allowed bigrams, or

a finite state grammar, as we will see shortly), or probabilities defined by a more

linguistically sophisticated grammar (e.g. a context free grammar or a minimalist

grammar). This formalism-neutrality is what makes it possible for information-theoretic

metrics like surprisal to act as the playing field on which any two grammars can be pitted

against each other, no matter how different the two grammars are in their internals; see

Figure 2.

hypothesized
mental grammar

probability distribution
over sentences

predictions about
sentence comprehension difficulty

hypothesized
mental grammar

probability distribution
over sentences

predictions about
sentence comprehension difficulty

surprisal plus
linking hypothesis (8)

Figure 2: Since surprisal can act as a test of probability distributions and probability
distributions can be seen as consequences of hypothesized grammars, surprisal can act
as a test of hypothesized grammars.

Note in particular that even though the calculation of surprisal values appeals to the

notion of transitioning from one word to the next linearly adjacent word, there is no

assumption that the grammatical knowledge that the comprehender brings to the task

takes the form of statements about which words can and cannot, or what is likely or

unlikely to, linearly follow certain other words (in the manner familiar from n-gram
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models, for example). The information in the table in (9) does not take this form, but still

provides everything we need to know in order to calculate surprisal values. Similarly, the

information in grammars that work with hierarchical structures rather than linear

structures also provides what we need in order to make surprisal calculations. The linear

nature of the metric reflects the linear nature of the external sentence-comprehension task,

not any assumptions about the internal knowledge being recruited by the comprehender.

In order for surprisal predictions to serve as a test of hypothesized grammars, of

course, it must be the case that different grammars have different effects on the probability

distributions that go into calculating surprisal. Obviously choosing a particular grammar

(in the traditional, non-probabilistic sense) does not pick out a particular probability

distribution; but adopting a particular grammar — breaking down the specification of a set

of expressions with accompanying probabilities into a particular system of interlocking

rules — does constrain the range of probability distributions that might arise. For

example, if our grammar expresses the assumption that generating a sentence amounts to

generating a subject and generating a predicate independently (roughly, think of something

like ‘S → NP VP’), then there will be no way to attach probabilities to a this grammar in a

way that assigns the six sentences in (9) the particular probabilities that they have there.12

To see this, notice that in order to generate ‘John saw it’ and ‘John saw them’ with the

probabilities shown (0.05 and 0.15, respectively), our grammar would need to generate the

predicate ‘saw it’ with a probability exactly three times greater than the probability of the

predicate ‘saw them’, because these two sentences differ only in the chosen predicate. (We

don’t know whether these two probabilities should be, for example, 0.3 and 0.1, in which

case the probability of the subject ‘John’ would need to be 0.5; or whether they should be

0.6 and 0.2, with ‘John’ having probability 0.25, etc. But we do know that they need to

stand in this 3:1 ratio.) But also, in order to generate ‘Mary saw it’ and ‘Mary saw them’

with the probabilities shown, our grammar would need to generate ‘saw it’ with a

probability exactly twice the probability of ‘saw them’. So this grammatical assumption
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about the structure of the sentences commits us to working within a restricted range of

probability distributions over that set of six sentences, which excludes the particular

probability distribution shown in (9). All else being equal, then, discovering that the

surprisal values computed from the probabilities in (9) make correct predictions would

constitute evidence against analyzing the subject and predicate as independent subparts of

a sentence.

To begin to look at concrete examples involving grammars, let us first consider the

finite-state automaton (FSA) in (13). It’s useful to begin by looking at FSAs, rather than

more sophisticated kinds of grammars, for a couple of reasons. The first reason is that it

allows us to see clearly that the crucial property of a grammar is the way it factors out the

generative work into a structured system of interlocking pieces, rather than any particular

representations that are built; these two notions are often intertwined in grammars that

manipulate tree structures. The second reason is that having seen surprisal calculated on

the basis of two distinct grammatical systems — first FSAs, and then PCFGs below — it is

easier to get a clear grasp on the idea of surprisal itself, as opposed to its incarnation in

relation to any specific kind of grammar, and this in turn makes it easier to understand

what it will take to operationalize the idea in whatever particular linguistically

sophisticated grammatical system one might wish to (e.g. some version of minimalist

syntax).

12By taking this probabilistic independence assumption to be part and parcel of what is meant by the
grammatical rule ‘S → NP VP’, I am leaving aside certain more complex alternatives that would assign
customized probabilities to certain specialized combinations of NPs and VPs. While such alternatives can
certainly be formulated, they amount to proposing a distinct generative mechanism that contains corre-
sponding specialized rules, e.g. ‘S → NP5 VP3’ and ‘S → NP4 VP7’, and therefore differs from grammar
that contains only the rule ‘S → NP VP’. The redundancy created by this move requires its own justifica-
tion. But to the extent that we would like to leave this option open, when I say that adopting a particular
grammar commits us to a restricted range of probability distributions, we should replace this with the claim
that it makes that restricted set of distributions more parsimonious hypotheses than the alternatives.
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(13)

1 2

3

4

5

6

John
0.6

Mary
0.4

ran
0.25

saw
0.75

it
0.7

them
0.3

This FSA encodes the idea that a sentence is generated by independently generating

a subject (corresponding to the choice of how to transition out of the start state) and

generating a predicate (corresponding to the choice of how to get from the next state to

some end state). It is this decomposition of the generative mechanisms into independent

sub-parts that we can think of as attributing grammatical structure to the generated

expressions; this is what the table in (9) does not do. There are a range of probability

distributions that can be defined by putting probabilities on the transitions in (13), and

the particular probabilities shown in the diagram pick out one of these. But as mentioned

above, the probability distribution in (9) is not in this range, since any probability

distribution defined on the basis of the FSA in (13) will have the property that

P (John saw it)

P (John saw them)
=

P (Mary saw it)

P (Mary saw them)

and this is not true of the distribution in (9). So, leaving aside the particular probabilities

shown in (13), the example distribution is inconsistent with the hypothesized discrete

grammatical structure that is encoded in the “shape” of the FSA in (13), and accordingly

observations about sentence comprehension difficulty that match up with surprisal values

calculated from this distributions constitute (all else being equal) evidence against that

hypothesized grammatical structure. (Similarly, observations that are in accord with

surprisal predictions based on probability distribution defined by (13) will, all else being

equal, constitute evidence in favour of it.) The FSA in (13)’s relative inflexibility with
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regard to definable probability distributions is a direct consequence of the way it assigns

more grammatical structure than the table in (9).

Another way to appreciate this last point is to note that, in order to choose a

particular probability distribution over sentences from the range of distributions made

available by the FSA in (13), it suffices to choose three component probabilities: if we

choose probabilities for, say, the arcs labeled ‘John’, ‘ran’ and ‘it’ (or any other three arcs),

then all the other necessary probabilities are determined, since each state’s outgoing arcs

must have probabilities that sum to one. In contrast, to choose a particular probability

distribution given the table format in (9), one must choose five component probabilities:

with five sentence probabilities fixed, the requirement that probabilities sum to one

determines the sixth sentence probability. So the structure of the FSA in (13) leaves us

with only three parameters, or degree of freedom, whereas the simple lookup table gives us

five.

It is perhaps unusual to invoke any notion of grammatical structure when dealing

with FSAs, given their linear nature. Re-expressing the FSA in (13) as a collection of

rewrite rules (‘X1 → John X2’, ‘X1 → Mary X2’, ‘X2 → ran X3’, etc.) may help to counter

any tendency to construe “linear” and “structured” as in opposition. But the significant

point, notation aside, is that this grammar makes the meaningful claim that certain pairs

of distinct sentences — such as the pair ‘John saw it’ and ‘Mary saw it’ — have their

predicate part in common. In the familiar tree-structure notation, this surfaces as the

claim that those two sentences’ tree structures have a certain subtree in common; in the

FSA setting, it surfaces as the claim that the state sequences used to generate the two

sentences have a certain subsequence in common. The table in (9) does not make any such

claim about any two sentences, and it is in this sense that the FSA ascribes more

grammatical structure (leading to fewer degrees of freedom in specifying probability

distributions). The bread-and-butter of grammatical analysis is making claims of this sort

about shared structure — typically, of course, in more complex grammatical frameworks.

17



Although this important general idea about generative structure underlies the way

any kind of grammar might be used to define a probability distribution, the way in which

surprisal values are determined from (the distribution defined by) a grammar will vary

from one kind of grammar to the next. It turns out to be rather simple if the grammar

takes the form of an FSA.13 For example, using the FSA in (13) and given the sentence

‘John saw it’, the surprisal at the word ‘it’ can be simply “read off” the corresponding arc

in the diagram: 0.7.

But for the purposes of understanding how surprisal predictions can be calculated for

other kinds of grammars — and understanding how related complexity metrics other than

surprisal, not discussed here, are calculated14 — a different way of thinking about this is

more useful. (While the linear nature of FSAs does not disqualify them from serving as a

useful illustration of the general notion of “grammatical structure” discussed above, it does

make the task of extracting surprisal values from them deceptively simple. The goal of

starting with FSAs was to make the first issue clear.) Instead of thinking about an ant

walking along the arcs in the diagram, such that the surprisal at a particular word is

simply the probability labeling that arc that the ant must walk along, a useful more

general notion is to think of the grammatical possibilities narrowing down as more

information about the sentence being encountered is revealed. In particular, this can take

the form of considering a “narrowing down” of the grammar itself: if we take the grammar

above and “prune out” parts of the grammar that are not consistent with the first word

being ‘John’, for example, we get the FSA in (14a). Then going one step further, further

“pruning” the grammar to generate only sentences that are, in addition, consistent with

the second word being ‘saw’, produces the FSA in (14b). And similarly for the third word,

which leaves us with (14c), an FSA which generates only the sentence being processed.

13I am restricting attention here to deterministic FSAs, for simplicity. The situation for nondeterministic
FSAs is not significantly different, since a nondeterministic FSA can always be converted to an equivalent
deterministic one. See e.g. Rabin and Scott (1959, p.121), Sipser (1997, p.54), Hopcroft and Ullman (1979,
p.22), Partee et al. (1990, p.462).

14See for example the discussion of how entropy reduction is calculated in Hale (2006, p.648) and Yun
et al. (2015, pp.125–127).
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(14) a.

1 2

3

4

5

6

John
0.6

ran
0.25

saw
0.75

it
0.7

them
0.3

b.

1 2

4

5

6

John
0.6

saw
0.75

it
0.7

them
0.3

c.

1 2

4

5

John
0.6

saw
0.75

it
0.7

What this provides is a sequence of grammars, each of which (in a certain relatively

externalistic, but nonetheless useful sense) characterizes the comprehender’s knowledge

state at a particular point in the sentence: (14a), for example, represents combining the

static “background” knowledge encoded in the original grammar in (13) (grammatical

knowledge in the familiar sense), with the knowledge that the first word of the sentence

currently being processed is ‘John’. More precisely, the set of expressions generated by

(14a) is the intersection of (a) the set of expressions generated by the original grammar in

(13), and (b) the set of expressions whose pronunciation begins with the word ‘John’. For

this reason, we can refer to (14a) as an “intersection grammar”. Similarly, (14b) is the

intersection grammar that brings together the background knowledge in (13) and the
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information that the first two words are ‘John saw’.15

Notice now that if we sum the probabilities assigned to all the sentences generated by

(13) the total is 1.0, but if we do the same for the subsequent intersection grammars the

total is less than 1 — 0.6 in (14a) and 0.6× 0.75 = 0.45 in (14b).16 The fact that, out of

the 1.0 probability mass in (13), there is 0.6 remaining in (14a), is precisely the fact that

the probability of a sentence generated by (13) beginning with the word ‘John’ is 0.6 —

which is to say, the fact that the surprisal at the first word is − log 0.6.

surprisal at ‘John’ = − log

(
total probability mass in (14a)

total probability mass in (13)

)
= − log

(
0.6

1.0

)
= − log 0.6

= 0.74

And similarly:

surprisal at ‘saw’ = − log

(
total probability mass in (14b)

total probability mass in (14a)

)
= − log

(
0.6× 0.75

0.6

)
= − log 0.75

= 0.42

surprisal at ‘it’ = − log

(
total probability mass in (14c)

total probability mass in (14b)

)
= − log

(
0.6× 0.75× 0.7

0.6× 0.75

)
= − log 0.7

= 0.52

15Formally, it’s useful to think of the sentence-prefix ‘John saw’ being represented by a very simple FSA
that only has three states: the first state is its start state, and it has only one outgoing transition, which
emits ‘John’ and leads to the second state; this second state has only one outgoing transition, which emits
‘saw’ and leads to the third, final state; and this third state has a self-loop that can emit any word at all
(see e.g. Hale, 2006, p.648). This FSA generates all word-sequences that begin with ‘John saw’. And given
any two FSAs, there exists a simple mechanical procedure for constructing their intersection, i.e. a new FSA
that generates precisely what the original two FSAs both generate (via the “cross-product construction”,
(Rabin and Scott, 1959, p.119)). So it is straightforward to produce the FSAs in (14) using this procedure.
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So generally:

(15) surprisal at word i = − log

(
total probability mass in Gi

total probability mass in Gi−1

)
where Gi is the intersection grammar that combines the comprehender’s “static” mental

grammar with the first i observed words of the relevant sentence.

Connecting back to the setup in Section 1, we have now extracted word-by-word

surprisal values for the sentence ‘John saw it’ both from the simple table in (9) and from

the FSA in (13). The former yielded the three-tuple 〈0.74, 1.58, 0.42〉, and the latter

yielded 〈0.74, 0.42, 0.53〉. These amount to two distinct predictions, extracted by applying

a single complexity metric to two different hypotheses about the “underlying nature” of a

single sentence (though see footnote 10). (These two predictions came from sources of

“different kinds”, namely a lookup table and an FSA, but of course we could begin with

two distinct FSAs and extract distinct predictions.) This is analogous to the way the node

ratio metric was applied to the two different hypothesized tree structures for the sentence

‘a b c d’ in (4), to extract the distinct values 7
4

and 5
4
. The linking hypothesis in (8)

connects word-by-word reading-time measures to the individual values in a sequence like

〈0.74, 0.42, 0.53〉, and therefore allows reading-time measures to serve as evidence, all else

being equal, for or against particular grammatical hypotheses.

2.3 Hierarchical structure

The important thing to note about the formulation of surprisal in (15) is that it provides

us with a recipe for calculating incremental surprisal values on the basis of a probabilistic

grammar which does not have the “which word comes next?” structure that FSAs have.

For any type of grammar one might be interested in (i.e. any system a syntactician might

have devised for breaking down the generative work that gives rise to a sentence), as long

as we are able to

16So strictly speaking these intersection grammars do not define their own probability distributions over
the generated sentences, they merely encode certain subsets of the distribution defined by (13).
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• intersect a grammar with a given initial portion of a sentence (i.e. the first n words),

and

• calculate the total probability mass remaining in such a grammar,

then we will be able to calculate incremental surprisal values from that kind of grammar.

And of course, the particular structured arrangement of interlocking pieces that a grammar

posits will impose constraints on the definable probability distributions that carry on

through each of these intersection grammars, and therefore have an impact on the

calculated surprisal values.

It turns out that both of these things can be done with many other familiar kinds of

grammars that are more powerful than FSAs, such as (probabilistic) context-free grammars

(PCFGs). The details for PCFGs are less intuitive, but a couple of illustrative examples

may serve to convey the basic idea.

To begin, it is not difficult to see how to intersect the context-free grammar in (16)

with the prefix ‘John’ to produce the grammar in (17), since these two grammars are

equivalent to the FSAs in (13) and (14a) respectively. We simply remove the rule that

generates ‘Mary’. (Although note that things would be more complicated in an FSA where

it was possible to return to the start state.)

(16) 0.4 X1 → Mary X2

0.6 X1 → John X2

0.25 X2 → ran

0.75 X2 → saw X4

0.7 X4 → it

0.3 X4 → them
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(17) 0.6 X1 → John X2

0.25 X2 → ran

0.75 X2 → saw X4

0.7 X4 → it

0.3 X4 → them

What distinguishes a CFG from an FSA, however, is its ability to depart from the

strictly “right-branching” kind of structure that (16) generates. Consider for example the

more interesting grammar in (18). An example of a structure that it generates is shown in

(19).

(18) 1.0 S → NP VP

0.6 NP → John

0.4 NP → D N

0.8 D → the

0.2 D → a

0.7 N → cat

0.3 N → dog

0.5 VP → V NP

0.3 VP → V S

0.2 VP → left

1.0 V → believes

(19)
S

VP

S

VP
left

NP
John

V
believes

NP

N
cat

D
the

Intersecting this grammar with the one-word prefix ‘the’ is less straightforward than
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the first example above, because the remaining portion of the sentence is not required to be

a single constituent. (In fact, in this grammar, it will never be a single constituent.)

Furthermore, although it is clear from the appearance of ‘the’ as the first word that some

NP node must be expanded according to the rule ‘NP → D N’, we cannot assume that all

NP nodes will be expanded according to this rule and ignore the other NP rules, in the way

that we ignored “roads not taken” in the simpler example.

A mechanical procedure exists for solving these problems, however (Bar-Hillel et al.

1961).17 The result, for the prefix ‘the’, is shown in (20). It contains, in addition to all of

the “original” rules from (18) (shown on the right), three new rules (shown on the left)

which describe how the new nonterminals S′, NP′ and D′ are used. Note also that the start

symbol of this new grammar is S′ (not S).

(20) 1.0 S′ → NP′ VP

0.4 NP′ → D′ N

0.8 D′ → the

1.0 S → NP VP

0.6 NP → John

0.4 NP → D N

0.8 D → the

0.2 D → a

0.7 N → cat

0.3 N → dog

0.5 VP → V NP

0.3 VP → V S

0.2 VP → left

1.0 V → believes

Each of the three new rules can be thought of as a specialized instance of a rule from

the original grammar (and they are shown alongside the corresponding original rules in

(20)). Since the start symbol of the new grammar is S′, these new rules amount to

17For other presentations see Grune and Jacobs (2008, chapter 13), Nederhof and Satta (2003, §4) and
Nederhof and Satta (2008b, §3). Specifically, the issue here is how to intersect a prefix FSA with a context-
free grammar, just as we earlier (footnote 15) needed to intersect a prefix FSA with another FSA.
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instances of the original rules that are forced to apply; for example, the NP′ that is the left

daughter of the root S′ can only be expanded as D′ and N (not as ‘John’). The upshot is

that any derivation beginning with the new start symbol S′ must produce at least this

partial structure:

(21)
S′

VPNP′

ND′

the

The “primed” nonterminals represent nonterminals whose expansion is somehow restricted

by the input we have seen so far (in this case, the word ‘the’). Notice that since all the

primed nonterminals have now been eliminated, and all that remains is to somehow expand

an N node and a VP node, the rest of the derivation can proceed with all of the freedom

that it would have if we were using the original grammar in (18), i.e. using the rules shown

on the right in (20).18

Besides constructing these intersection grammars, recall that the second important

prerequisite for deriving surprisal values is being able to calculate the total probability

mass that is “left” in an intersection grammar such as the one in (20). The three new rules

shown on the left have the same probabilities as the original rules they are based on, so the

total probability assigned to all sentences generated by this grammar is less than 1 just as

it was for the intersection grammars in (14). In the particular case of (20) it is perhaps not

difficult to see that total probability assigned by this intersection grammar is 1.0× 0.4× 0.8,

since these are the probabilities of the three rules that we have been forced to use in order

to generate ‘the’ as the first word. Methods for computing this probability in general are

18The procedure for constructing these intersection grammars has turned out to be surprisingly closely
related to certain approaches to parsing, in particular tabular parsing of the sort used in the well-known
CKY algorithm. The key idea is that parsing reduces to intersection with an FSA that generates exactly
one sentence; see Grune and Jacobs (2008, chapter 13), Lang (1988), Billot and Lang (1989). The CKY
algorithm is due to Cocke and Schwartz (1970), Kasami (1965) and Younger (1967); see also Hopcroft and
Ullman (1979, pp.139–141), Aho and Ullman (1972, pp.314–320), Jurafsky and Martin (2000, pp.453–455),
Grune and Jacobs (2008, §4.2).
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discussed in detail by Nederhof and Satta (2008a).19 We therefore have everything we need

to compute word-by-word surprisal values from a PCFG, following the formulation in (15).

Finally, it is worth stressing again that while I have restricted attention to surprisal

here, there are other ways in which one might choose to quantify cognitive workload based

on how the range of grammatical possibilities is affected by each new incoming word,

i.e. the “difference” or “change” between two intersection grammars. Surprisal is merely

the simplest choice for illustration. A notable alternative is entropy reduction, which can

be expressed as in (22), analogous to the expression of surprisal in (15) above.

(22) entropy reduction at word i = entropy of Gi−1 − entropy of Gi

So calculating entropy reduction values from a grammar involves computing the same

intersection grammars as we have used above, and differs from calculating surprisal values

only in that (i) we calculate the entropy of each Gi rather than its remaining probability

mass, and (ii) the “change” is quantified by the result of a subtraction rather than a

division.20 Nearly everything I have said about the overall approach outlined in this section

is therefore equally applicable to entropy reduction, and to many other imaginable variants

of these metrics.

19Other methods of calculating prefix probabilities from a PCFG, presented without reference to inter-
section grammars, were described by Jelinek and Lafferty (1991) and Stolcke (1995). Goodman (1998,
pp.71–77) gives another solution that more closely resembles one based on intersection grammars. In light of
the connection discussed in footnote 18, the distinction between methods that use intersection grammars and
those that don’t largely dissolves; intersection grammars are just one way to look at what needs to be done.
Nederhof and Satta (2008b) review the explicit construction of intersection grammars in §3, the calculation
of remaining probability mass (the “partition function”) in §2, and Jelinek and Lafferty’s distinct method
in §7.

20Another way of seeing these two metrics as having the same general form comes from the fact that
surprisal at the ith word is equivalent to the relative entropy of the Gi with respect to Gi−1, also known
as the Kullback-Leibler (KL) divergence of Gi from Gi−1 (Levy, 2005, 2008). A detail that I am glossing
over here is that to calculating either entropy of KL divergence requires that an intersection grammar be
renormalized ; see Nederhof and Satta (2008b, §4).
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3 Automata-theoretic parsing models

In this section I will introduce three distinct parsing methods for context-free grammars:

bottom-up, top-down and left-corner. The first two, bottom-up and top-down, are very

simplistic and not particularly plausible as cognitive models, but they are useful

stepping-stones for understanding the more complicated left-corner method, which better

corresponds to (at least certain aspects of) human parsing.21

All three of the methods discussed here will be expressed as transition systems : given

the task of parsing a particular sentence using a particular grammar, each method will

specify a particular starting configuration and a particular goal configuration; and in

addition, will specify the allowable transitions by which we can progress from one

configuration to another. If there is a sequence of transitions that leads from the starting

configuration to the goal configuration, then the sentence is grammatical (and the sequence

of transitions determines its structural description); otherwise, it is ungrammatical (i.e. has

no structural description).

Note that what I am describing here as parsing method takes both a sentence and a

grammar as “inputs”. The parsing methods themselves make no reference to particular

words or particular grammatical categories (such as NP or VP); rather, they are able to

operate with whatever context-free grammar one provides. This contrasts with the way the

term “parser” is sometimes used, namely to refer to a mechanism that takes only a

sentence as an input and attempts to find an analysis for that sentence according to some

grammar that is implicitly specified within the workings of that mechanism.

What these parsing methods provide is something like a “Marr (1982) level two”

description of a mechanism for processing sentences. These algorithmic details provide

plenty of hooks on which we can hang various linking hypotheses. The simple one that I

will end up appealing to in this section is based on the idea that comprehension difficulty

21The content of this section is very similar to that of (at least) Abney and Johnson (1991), Resnik (1992),
Wolf and Gibson (2006) and Kanazawa (2016, lecture 2). The core underlying ideas go back to Chomsky
and Miller (1963), Chomsky (1963) and Miller and Chomsky (1963).
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arises when the amount of information that needs to be simultaneously stored in order to

grammatically analyze a sentence is large.

Throughout this section I will use the grammar in (23) for illustration. In presenting

the general schemas for the various parsing methods, I will assume that the right hand side

of each grammar rule is either (a) a single terminal symbol, or (b) a sequence of

nonterminal symbols.22 I will also assume, as is common, that the start symbol is always S.

(23) S → NP VP N → dog, cat, rat, wife, brother

S → WHILE S S NP → John, Mary

NP → NP POSS N V → barked, chased, bit, ate, fled

NP → (D) N (PP) (SRC) (ORC) D → the

VP → V (NP) (PP) P → on, in, with

PP → P NP C → that

SRC → C VP POSS → ’s

ORC → NP V WHILE → while

As a motivating running example, and as an aid to understanding the differences

between the three parsing methods being discussed, we’ll consider ways to account for the

pattern of human comprehension difficulty on left-embedded, right-embedded and

center-embedded structures: while left-embedding and right-embedding structures can

increase in depth apparently without bound and still remain easily comprehensible,

center-embedding structures quickly become incomprehensible. I’ll use the sentences in

(24), (25) and (26) as illustrative examples for this point. (These particular sentences don’t

make a well-designed set of controlled experimental stimuli, but will allow for an easy

illustration of the key ideas using the simple grammar in (23) above.)

(24) Left-branching structures

a. John fled

22Any context-free grammar can be straightforwardly converted into this form, via the introduction of
“singleton” nonterminals like WHILE in (23).
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b. John ’s dog fled

c. John ’s wife ’s dog fled

(25) Right-branching structures

a. Mary chased the cat

b. Mary chased the cat that bit the rat

c. Mary chased the cat that bit the rat that ate the cheese

(26) Center-embedding structures

a. the rat fled

b. the rat the cat chased fled

c. the rat the cat the dog bit chased fled

Specifically, I will present an illustrative account of the fact that there is an increase

in comprehension difficulty in (26c) relative to (26b), but no such increase in (24b)/(24c)

or (25b)/(25c). (I leave aside any facts about the ‘a.’ sentences, which are shown just to

demonstrate the sense in which these three pair-wise comparisons are analogous.) In

concrete terms, the aim will be to find some function F such that

F (tree for (24b)) = F (tree for (24c))

F (tree for (25b)) = F (tree for (25c))

F (tree for (26b)) < F (tree for (26c))

such that, in combination with the linking hypothesis that

(27) A speaker processing the string PHON(t) will experience greater perceptual difficulty

the greater F (t) is.

this simplified23 pattern of facts has an explanation. The form of the explanation is exactly

the one illustrated with the node-ratio example from Miller and Chomsky (1963)

mentioned in Section 1. Of course since F is a function of the tree structures that a
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grammar associates with the relevant strings, the predictions we end up making will be

sensitive to our choice of grammar.

The grammar in (23) generates all the sentences in (24), (25) and (26), with

structures like the following. These are of course extremely simplistic, particularly as

regards the treatment of relative clauses (SRC stands for “subject relative clause”, ORC

for “object relative clause”), but they capture the basic structural configurations well

enough for our purposes. Specifically, these trees show structures for the ‘b.’ sentences in

(24), (25) and (26); structures for the ‘a.’ sentences would have just one of the highlighted

constituents each, and structures for the ‘c.’ sentences would have three of the highlighted

constituents each. Nothing in particular hinges on the fact that the highlighted

self-embedded constituents are NPs in all three cases; in (29) we could just as well

highlight the relationship between the two VP nodes. The important point is that in (28)

there are constituents appearing as the left portion of a larger constituent of the same type,

in (29) there are constituents appearing as the right portion, and in (30) there are

constituents appearing as medial portions of a larger constituent of the same type.

(28) S

VP

V
fled

NP

N
dog

POSS
’s

NP
John

23In particular, it’s not at all clear that there’s much of a difference between, on the one hand, the
(24a)/(24b) and (25a)/(25b) comparisons, and on the other, the (26a)/(26b) comparison. If there’s not,
then the distinctive status of (26c) might be better explained as some kind of “overflow” effect based on a
function that has similar properties to the hypothetical F introduced above. Note also that I am leaving
aside all comparisons between sentence of different embedding-types, so for example the relationship between
F (tree for (25b)) and F (tree for (26b)) will not play any role in any predictions.
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(29) S

VP

NP

SRC

VP

NP

N
rat

D
the

V
bit

C
that

N
cat

D
the

V
chased

NP
Mary

(30) S

VP

V
fled

NP

ORC

V
chased

NP

N
cat

D
the

N
rat

D
the

3.1 Bottom-up parsing

In bottom-up parsing, as in all three of the methods we will discuss here, a configuration

has two parts, a buffer and a stack : the buffer is a record of our left-to-right progress

through the sentence, and the stack is a record of what we have worked out on the basis of

that part of the sentence that we have consumed so far.24 The stack takes the form of a

sequence of nonterminal symbols. I will write configurations as an ordered pair, with the

stack first and the buffer second. I will represent buffers with a ‘|’ symbol separating the

input consumed so far from that which remains.

The general idea behind bottom-up parsing is that we read in input from left-to-right,

24This means that the parsing device is essentially a pushdown automaton (PDA); see Sipser (1997, ch.2),
Hopcroft and Ullman (1979, ch.5), Partee et al. (1990, ch.18). A parsing device as presented here, however,
differs from the usual presentation of PDAs in that I am omitting any reference to the automaton’s internal
state (or, assuming that each automaton only has one state that does not change).

31



and when we find two or more elements adjacent to each other that match with the

right-hand side of some grammar rule, we replace those elements with the nonterminal

symbol that appears on the left-hand side of that rule. For example, if the relevant

grammar contains a rule ‘VP → V NP’ and we find occurrences of V and NP adjacent to

each other (in that order), then they can be replaced on the stack with VP; this occurrence

of VP may itself subsequently be replaced by some other symbol on the basis of a rule

which has VP somewhere on its right-hand side. The “goal” is to reach a configuration

where the stack contains only the start symbol, S.

The bottom-up parsing method is defined in (31). Since these transitions only

manipulate the right edge of the sequence of nonterminal symbols that is the first

component of each configuration, I will refer to that edge as the “top” of the stack. A

shift transition consumes a word (wi) of input (moving the marker one place to the right

in the buffer), and adds that word’s category (X) to the top of the stack; a reduce

transition leaves our position in the input unchanged but operates on the stack, replacing

the symbols that appear on the right hand side of some rule (Y1 . . . Ym) with the symbol

that appears on the left hand side of that rule (X).

(31) Given a sentence w1 . . . wn to be parsed and a grammar:

• starting configuration: (ε, |w1 . . . wn)

• goal configuration: (S, w1 . . . wn | )

• shift transitions: (Σ, w1 . . . |wi . . . wn) =⇒ (ΣX,w1 . . . wi | . . . wn)

if there is a rule X → wi in the grammar

• reduce transitions: (ΣY1 . . . Ym, w1 . . . | . . . wn) =⇒ (ΣX,w1 . . . | . . . wn)

if there is a rule X → Y1 . . . Ym in the grammar

(where Σ is a placeholder for sequences of nonterminal symbols)

The workings of these transitions are most easily understood via an example. The

actions of a bottom-up parser on the sentence ‘the dog chased the cat’ are shown in
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Table 1. We begin in the starting configuration, with the stack empty and with the full

sentence remaining to be read, as indicated by the marker at the beginning of the buffer.

The first shift step consumes the first word, ‘the’ (moving the marker one step to the

right in the buffer), and puts its category, D, onto the stack. The second step does likewise

for the word ‘dog’, and its category N. We then find ourselves with the sequence D N on

the stack, which matches the right hand side of one of the grammar’s rules, specifically the

rule NP → D N. We can therefore take a reduce transition at step 3, replacing the

current stack contents with NP and leaving the buffer’s progress marker unchanged in its

position after ‘dog’.

Type of transition Rule used Configuration

0 — — (ε, | the dog chased the cat)
1 shift D → the (D, the | dog chased the cat)
2 shift N → dog (D N, the dog | chased the cat)
3 reduce NP → D N (NP, the dog | chased the cat)
4 shift V → chased (NP V, the dog chased | the cat)
5 shift D → the (NP V D, the dog chased the | cat)
6 shift N → cat (NP V D N, the dog chased the cat | )
7 reduce NP → D N (NP V NP, the dog chased the cat | )
8 reduce VP → V NP (NP VP, the dog chased the cat | )
9 reduce S → NP VP (S, the dog chased the cat | )

Table 1: A first illustration of bottom-up parsing.

In the next two steps, two more shift transitions consume ‘chased’ and ‘the’. No

reduce transition is possible after Step 5, when the stack contains NP V D, because

neither V D nor NP V D is the right hand side of any grammar rule.25 A reduce

transition next becomes possible only after the last word of the input (‘dog’) is consumed

in Step 6, at which point the D N sequence that is on the top of the stack can be replaced

with NP (Step 7). This then feeds the final two reduce steps in Step 8 and Step 9, after

which we have reached a configuration where all the input has been consumed (the

progress marker is at the far right of the buffer) and the stack contains just the single
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symbol S, i.e. we have reached a goal configuration.

Ambiguity resolution

The only transitions shown in Table 1 are the “correct” transitions that form a path from

the starting configuration to the goal configuration. But of course there are other

transitions that we could have taken instead at certain points. For example, instead of

applying reduce in Step 3 we could have applied shift, which would have led to the

configuration (D N V, the dog chased | the cat); and from that point, we could have carried

out the same sequence of steps as appear in Table 1 to process the VP constituent, with

D N at the bottom of the stack throughout instead of NP. This path hits a dead end,

however, after the reduce step that forms the VP constituent, because we end up with

D N VP in the stack (instead of NP VP) and there is now no way to “get at” the D and N

that should be combined to form an NP: in order to be acted on by reduce a sequence of

nonterminal symbols must be at the top of the stack, which means that the D and the N

“missed their chance” after Step 2. It turns out that there is exactly one sequence of

“correct” transitions for each derivation licensed by the grammar: if a word-sequence has

two grammatical derivations (i.e. is structurally ambiguous) then there will be two distinct

transition-sequences for that word-sequence that both end at the goal configuration.26

In a simple example such as Table 1, it is relatively straightforward to identify which

transitions will turn out to be “wrong turns”. But the general idea of deciding which

transition to take from a particular configuration corresponds to decisions about (local or

global) ambiguity. In this case choosing not to apply reduce after Step 2 perhaps seems

“obviously wrong”, but in general these kinds of choices correspond to decisions about

ambiguity, either local or global. In the case of a globally ambiguous sentence, it will be

25For now I am glossing over the fact that a reduce transition, using the VP → V rule, is also possible
after Step 4.

26In particular, the sequence of configurations visited by a bottom-up parser corresponds exactly to a
reverse rightmost context-free derivation: moving upwards in Table 1 corresponds to rewriting the rightmost
nonterminal symbol at each step.
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possible to identify the particular point at which the paths to the two possible structural

descriptions diverge. To illustrate a case of local ambiguity, consider the sentence in (32).

In keeping with the “late closure” heuristic (Frazier and Rayner, 1982; Frazier and Clifton,

1996), comprehenders often analyze ‘the dog that barked’ as the object of the embedded

verb ‘chased’; this leads to a mild garden-path effect when it becomes apparent, at ‘fled’,

that this phrase is in fact the matrix subject.

(32) While John chased the dog that barked fled.

When the bottom-up parsing system is applied to this sentence, a choice point arises

between shift and reduce after ‘chased’, corresponding to the decision about whether to

analyze this verb as transitive or intransitive or not. The two tables in (33) show the point

where these two paths diverge, namely after the first two lines which are the same in each.

The late closure heuristic says exactly that shift transitions, such as the one taken in the

third line of the table in (33a), should be preferred over reduce transitions whenever a

choice between them arises.

(33) a.

· · · · · · (WHILE NP, while John | chased the dog that barked fled)
shift V → chased (WHILE NP V, while John chased | the dog that barked fled)

shift D → the (WHILE NP V D, while John chased the | dog that barked fled)
shift N → dog (WHILE NP V D N, while John chased the dog | that barked fled)
· · · · · · · · ·
· · · · · · (WHILE NP V S, while John chased the dog that barked fled | )

b.

· · · · · · (WHILE NP, while John | chased the dog that barked fled)
shift V → chased (WHILE NP V, while John chased | the dog that barked fled)

reduce VP → V (WHILE NP VP, while John chased | the dog that barked fled)
reduce S → NP VP (WHILE S, while John chased | the dog that barked fled)
shift D → the (WHILE S D, while John chased | the dog that barked fled)
· · · · · · · · ·
· · · · · · (WHILE S S, while John chased the dog that barked fled | )
reduce S → WHILE S

S
(S, while John chased the dog that barked fled | )

A simple view of the reanalysis that is required in this example would be to imagine a

device that continues down the path taken in (33a) until it reaches a dead end after
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consuming ‘fled’ (there is nowhere to go from the transition which has ‘WHILE NP V S’ on

the stack), and then returns, or “backtracks”, to the divergence point to pursue the

alternative path taken in (33b).

Embedding structures

Let us turn to the pattern noted in (24), (25) and (26) above. The workings of the

bottom-up parsing system on the two-clause and three-clause center-embedded sentences,

(26b) and (26c), are shown in Table 2. (Here and in other tables below, instead of writing

out the buffer in full I simply write a number indicating the position in the sentence where

the ‘|’ symbol would appear.) Notice that in order to analyze these sorts of structures, we

must shift all the initial determiners and nouns before any reduce transitions can be

taken, since the first chance we get to combine things into a completed constituent is only

after the last determiner-noun pair has been consumed (‘the cat’ in (26b), ‘the dog’ in

(26c)). A natural idea to consider is that what makes (26c) noticeably more difficult than

(26b) is that processing (26c) requires an ability to maintain six symbols at a time in a

stack-based memory system (see the configuration after shifting ‘dog’), whereas processing

(26b) only requires being able to maintain four (see the configuration after shifting ‘cat’).27

Recall however that it is only center-embedding structures that cause this drastic

increase in comprehension difficulty. Next consider the workings of a bottom-up parsing

system on the two-clause and three-clause left-embedded sentences, (24b) and (24c), shown

in Table 3. In these scenarios it is possible to perform a reduce transition after

consuming a beginning portion matching the pattern NP POSS N, as shown in the fourth

step on both sides of Table 3. Note, however, that this is possible no matter how deeply

the NP constituent thus formed needs to eventually be embedded, i.e. whether the NP

constituent thus formed eventually turns out to be the matrix subject, as it is in (24b), or

27The point would not be significantly affected if we adopted a structure where ‘the rat’ was a subcon-
stituent of ‘the rat the cat chased’. If the structure were [NP [NBAR the rat] [ORC the cat chased]] then
reduce steps forming the NBAR subconstituents could be performed early, but we would still find ourselves
accumulating a number of NBARs on the stack that increases with the depth of embedding.
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a subconstituent of the matrix subject, as it is in (24c). Either way we arrive at a

configuration where one NP symbol on the stack suffices to track our progress through the

structure. And, importantly, in the more deeply-embedded case of (24c), the resulting NP

can serve as the starting point for another iteration of the “loop” indicated by the large

braces in Table 3. These left-branching sentences differ only in how many times we go

around that loop: processing the larger sentence in (24c) just involves revisiting some of

the stack arrangements that also appear in the course of processing (24b), and the same

would be true if we extended the pattern to create a yet longer sentence.28 This means

that the number of symbols a device must be able to maintain simultaneously will not grow

as the size of the left-branching structure to be processed grows. Specifically, we can

observe that the maximum number of symbols stored at a time is three on both sides of

Table 3. This gives us the basis of an explanation for why large center-embedding

structures become difficult to comprehend but large left-branching structures do not.

Concretely, what we can propose amounts to a new function F (t) defined on

structural descriptions of the sort mentioned in Section 1. Given a context-free parse tree,

there is a uniquely determined sequence of configurations that a bottom-up parser must

move through to process it, and therefore also a uniquely determined “maximum stack

size”. Let us write MaxStackBU(t) for this maximum stack size (BU for “bottom-up”; we

will consider stack sizes for other parsing systems below). Then for the examples

considered so far we have the following pattern:

MaxStackBU(tree for (24b)) = MaxStackBU(tree for (24c)) (left-branching)

MaxStackBU(tree for (26b)) < MaxStackBU(tree for (26c)) (center-embedding)

which in combination with the linking hypothesis that

(34) A speaker processing the string PHON(t) will experience greater perceptual difficulty

28i.e. ‘John’s brother’s wife’s dog fled’.
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the greater MaxStackBU(t) is.

correctly predicts the relevant facts for these four sentences.

For the other pair however, i.e. (25b) and (25c), this theory makes the wrong

predictions. The workings of the bottom-up parser on these right-branching sentences are

shown in Table 4. The completely right-branching structure means that the bottom-up

parsing must shift the entire sentence before performing any reductions at all; the first

complete constituent that it can construct is the NP consisting of the last two words of the

sentence. So for a bottom-up parser, right-branching structures share with

center-embedding structures the property that the memory load increases with the depth

of embedding.

MaxStackBU(tree for (25b)) < MaxStackBU(tree for (25c)) (right-branching)

The linking hypothesis in (34) therefore incorrectly predicts that (25c) should show greater

comprehension difficulty than (25b).

This incorrect prediction of course also arises from having chosen the grammar in

(23). The linking hypothesis serves to expose this grammar to evidence concerning

comprehension difficulty. So of course one possible response to finding this incorrect

prediction is to maintain (34) and reject the grammar in (23), and seek some other

grammar that assigns different tree structures for (25b) and (25c) (e.g. perhaps

left-branching structures) so that the correct predictions arise. Let us suppose though that

we are more confident in our hypothesis that (23) is the correct mental grammar for the

relevant speakers, than we are in the linking hypothesis in (34); then a reasonable next step

is to seek some alternative to bottom-up parsing, rejecting (34) but leaving our

hypothesized grammar in (23) in place.

38



(26b): 0 the 1 rat 2 the 3 cat 4 chased 5 fled 6

Transition Rule used Configuration

— — (ε, 0)
shift D → the (D, 1)
shift N → rat (D N, 2)
shift D → the (D N D, 3)
shift N → cat (D N D N, 4)
reduce NP → D N (D N NP, 4)
shift V → chased (D N NP V, 5)
reduce ORC → NP V (D N ORC, 5)
reduce NP → D N (NP, 5)
shift V → fled (NP V, 6)
reduce VP → V (NP VP, 6)
reduce S → NP VP (S, 6)

(26c): 0 the 1 rat 2 the 3 cat 4 the 5 dog 6 bit 7 chased 8 fled 9

Transition Rule used Configuration

— — (ε, 0)
shift D → the (D, 1)
shift N → rat (D N, 2)
shift D → the (D N D, 3)
shift N → cat (D N D N, 4)
shift D → the (D N D N D, 5)
shift N → dog (D N D N D N, 6)
reduce NP → D N (D N D N NP, 6)
shift V → bit (D N D N NP V, 7)
reduce ORC → NP V (D N D N ORC, 7)
reduce NP → D N ORC (D N NP, 7)
shift V → chased (D N NP V, 8)
reduce ORC → NP V (D N ORC, 8)
reduce NP → D N ORC (NP, 8)
shift V → fled (NP V, 9)
reduce VP → V (NP VP, 9)
reduce S → NP VP (S, 9)

Table 2: The effect of center-embedding on bottom-up parsing. Memory load increases as embed-
ding depth increases: maximum of 4 symbols for (26b) but 6 symbols for (26c).

(24b): 0 John 1 ’s 2 dog 3 fled 4

Transition Rule used Configuration

— — (ε, 0)
shift NP → John (NP, 1)
shift POSS → ’s (NP POSS, 2)

shift N → dog (NP POSS N, 3)
reduce NP → NP POSS N (NP, 3)
shift V → fled (NP V, 4)
reduce VP → V (NP VP, 4)
reduce S → NP VP (S, 4)

(24c): 0 John 1 ’s 2 wife 3 ’s 4 dog 5 fled 6

Transition Rule used Configuration

— — (ε, 0)
shift NP → John (NP, 1)
shift POSS → ’s (NP POSS, 2)

shift N → wife (NP POSS N, 3)
reduce NP → NP POSS N (NP, 3)
shift POSS → ’s (NP POSS, 4)

shift N → dog (NP POSS N, 5)
reduce NP → NP POSS N (NP, 5)
shift V → fled (NP V, 6)
reduce VP → V (NP VP, 6)
reduce S → NP VP (S, 6)

Table 3: The effect of left-embedding on bottom-up parsing. No increase in memory load as
embedding depth increases: maximum of 3 symbols in both cases.

(25b): 0 Mary 1 chased 2 the 3 cat 4 that 5 bit 6 the 7 rat 8

Transition Rule used Configuration

— — (ε, 0)
shift NP → Mary (NP, 1)
shift V → chased (NP V, 2)
shift D → the (NP V D, 3)
shift N → cat (NP V D N, 4)
shift C → that (NP V D N C, 5)
shift V → bit (NP V D N C V, 6)
shift D → the (NP V D N C V D, 7)
shift N → rat (NP V D N C V D N, 8)
reduce NP → D N (NP V D N C V NP, 8)
reduce VP → V NP (NP V D N C VP, 8)
reduce SRC → C VP (NP V D N SRC, 8)
reduce NP → D N SRC (NP V NP, 8)
reduce VP → V (NP VP, 8)
reduce S → NP VP (S, 8)

(25c): 0 Mary 1 chased 2 the 3 cat 4 that 5 bit 6 the 7 rat 8 that 9 ate 10 the 11 cheese 12

Transition Rule used Configuration

— — (ε, 0)
shift NP → Mary (NP, 1)
shift V → chased (NP V, 2)
shift D → the (NP V D, 3)
shift N → cat (NP V D N, 4)
shift C → that (NP V D N C, 5)
shift V → bit (NP V D N C V, 6)
shift D → the (NP V D N C V D, 7)
shift N → rat (NP V D N C V D N, 8)
shift C → that (NP V D N C V D N C, 9)
shift V → are (NP V D N C V D N C V, 10)
shift D → the (NP V D N C V D N C V D, 11)
shift N → cheese (NP V D N C V D N C V D N, 12)
reduce NP → D N (NP V D N C V D N C V NP, 12)
reduce VP → V NP (NP V D N C V D N C VP, 12)
reduce SRC → C VP (NP V D N C V D N SRC, 12)
reduce NP → D N SRC (NP V D N C V NP, 12)
reduce VP → V NP (NP V D N C VP, 12)
reduce SRC → C VP (NP V D N SRC, 12)
reduce NP → D N SRC (NP V NP, 12)
reduce VP → V (NP VP, 12)
reduce S → NP VP (S, 12)

Table 4: The effect of right-embedding on bottom-up parsing. Memory load increases as embedding
depth increases: maximum of 8 symbols for (25b) but 12 symbols for (25c).
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3.2 Top-down parsing

As an alternative to bottom-up parsing, we can consider top-down parsing. As the names

suggest, these two parsing methods can be thought of as inverses of each other: whereas

bottom-up parsing works from the words up to the start symbol, top-down parsing works

from the start symbol down to the words.

The top-down parsing method is defined in (35). Since the top-down parsing

transitions only manipulate the left edge of the sequence of nonterminal symbols, I will

refer to that edge as the “top” of the stack. The starting configuration has the start

symbol on the stack, and the goal configuration has an empty stack. A predict transition

eliminates a symbol (X) currently at the top of the stack, by guessing a particular

grammar rule that can be used to expand it and replacing it with that rule’s right-hand

side (Y1 . . . Ym). A match transition eliminates a symbol (X) currently at the top of the

stack by consuming a word (wi) of the corresponding category.

(35) Given a sentence w1 . . . wn to be parsed and a grammar:

• starting configuration: (S, |w1 . . . wn)

• goal configuration: (ε, w1 . . . wn | )

• predict transitions: (XΣ, w1 . . . | . . . wn) =⇒ (Y1 . . . YmΣ, w1 . . . | . . . wn)

if there is a rule X → Y1 . . . Ym in the grammar

• match transitions: (XΣ, w1 . . . |wi . . . wn) =⇒ (Σ, w1 . . . wi | . . . wn)

if there is a rule X → wi in the grammar

(where Σ is a placeholder for sequences of nonterminal symbols)

Again, the mechanics of these transition rules are most easily understood via an

example. The progress of a top-down parsing on the sentence ‘the dog chased the cat’ are

shown in Table 5. We begin with the start symbol S on the stack, and the full sentence

remaining to be read. The first two steps expand this occurrence of S according to the rule
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‘S → NP VP’, and then expand the introduced occurence of NP according to the rule ‘NP

→ D N’. The upshot of these first two steps is that we have replaced the task of fulfilling a

prediction that ‘the dog chased the cat’ is a sentence (S) with the task of fulfilling a

prediction that ‘the dog chased the cat’ is of the form ‘D N VP’. In the third step we make

some progress towards fulfilling this prediction: since the first word to be consumed is ‘the’

and this matches the category D that is currently on the top of the stack, a match

transition “cancels them out”. The fourth step similarly consumes the word ‘dog’ and

eliminates the corresponding symbol N. After this step we are left with the task of fulfilling

the prediction that ‘chased the cat’ is a VP.

Type of transition Rule used Configuration

0 — — (S, | the dog chased the cat)
1 predict S → NP VP (NP VP, | the dog chased the cat)
2 predict NP → D N (D N VP, | the dog chased the cat)
3 match D → the (N VP, the | dog chased the cat)
4 match N → dog (VP, the dog | chased the cat)
5 predict VP → V NP (V NP, the dog | chased the cat)
6 match V → chased (NP, the dog chased | the cat)
7 predict NP → D N (D N, the dog chased | the cat)
8 match D → the (N, the dog chased the | cat)
9 match N → cat (ε, the dog chased the cat | )

Table 5: A first illustration of top-down parsing.

The fifth step replaces this VP prediction with the prediction of a V NP sequence.

(Of course a “wrong turn” that could also be taken at this point would be to replace it

with a prediction of simply a V instead; the particular wrong turns that present themselves

differ according to the parsing method adopted.) Next the V is matched (Step 6) and then

the NP is expanded (Step 7). Note that expanding the NP before the V is matched is not

an option, because the predict transition only manipulates the top of the stack. After

match transitions consume the last two words in Step 8 and Step 9, we have reached the

end of the sentence with no predictions remaining to be fulfilled (the stack is empty), so

the goal configuration has been reached.
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A key point in understanding the relationship between bottom-up and top-down

parsing — and also the left-corner parsing method, discussed in the next subsection, which

can be seen as combining the advantages of both — is the fact that symbols on the stack

on bottom-up parsing represent the already-processed part of the sentence, whereas

symbols on the stack on top-down parsing represent (predictions about) the yet-to-come

part of the sentence. In each bottom-up parsing configuration shown in Table 1, the

sequence of nonterminal symbols corresponds to the portion of the sentence to the left of

the ‘|’ symbol: for example, ‘D N’ after Step 2 is a description of ‘the dog’, and ‘NP V’

after Step 4 is a description of ‘the dog chased’. In the top-down parsing configurations

shown in Table 5, however, the sequence of nonterminal symbols corresponds to the words

to the right of the ‘|’ symbol: for example, ‘N VP’ after Step 3 represents a prediction that

can be fulfilled by ‘dog chased the cat’, and ‘D N’ after Step 7 represents a prediction that

can be fulfilled by ‘the cat’. A consequence of this difference is that the two methods differ

in which points in the sentence allow for a compact representation of the parser’s current

internal state. The bottom-up parser’s internal state after consuming the words ‘the dog’

can be represented compactly in one symbol, namely NP, as shown after Step 3 in Table 1.

The top-down parser’s state at this point in the sentence can also be represented compactly

in one symbol, namely VP, as shown after Step 4 in Table 5. But notice that only with the

top-down method can a parser’s state after the word ‘chased’ be represented in a single

symbol: since what is predicted at this point is a single NP constituent, this single symbol

suffices for the top-down parser, as shown after Step 6 in Table 5, but the bottom-up

parser has no one-symbol representation of its progress at this point since ‘the dog chased’

is not a constituent.

The effects of left-branching, right-branching and center-embedding structures on the

stack requirements with top-down parsing can be clearly understood through these

observations about the interpretations of stack symbols. Like bottom-up, the top-down

method correctly predicts increasing maximum stack size as center-embedding depth
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increases, as shown in Table 6. But the top-down method shows the reverse pattern from

the bottom-up method with regard to left-branching and right-branching structures,

i.e. the maximum stack size increases for left-branching but not for right-branching, as

shown in Table 7 and Table 8.

MaxStackTD(tree for (24b)) < MaxStackTD(tree for (24c)) (left-branching)

MaxStackTD(tree for (25b)) = MaxStackTD(tree for (25c)) (right-branching)

MaxStackTD(tree for (26b)) < MaxStackTD(tree for (26c)) (center-embedding)

The absence of any increase in maximum stack size in Table 8 has the same kind of

explanation as we saw in Table 3: the difference between (25b) and (25c) is simply the

difference between going around a “loop” once or twice, where the loop begins and ends at

configurations where the prediction about the remaining portion of the sentence can be

compactly represented as a single NP symbol (i.e. after ‘chased’ and ‘bit’ and ‘ate’). So the

efficient processing of right-branching structures by the top-down parser stems from the

fact that these are structures where the remaining portions of a sentence have compact

descriptions in terms of predicted constituents — just as the efficient processing of

left-branching structures when working bottom-up stems from the fact that such structures

allow compact representations in terms of already-processing constituents. When the

top-down parser is confronted with left-branching structures, the required stack size

increases with the depth of embedding (Table 7), because the remaining predicted

structure takes the form of a large number of distinct constituents (and is at its largest at

the beginning of the sentence); right-branching structures pose analogous difficulties for

bottom-up parsing, since the already-consumed portion of a sentence can only be described

with a large number of symbols (and is at its largest at the end of the sentence).

Center-embedding structures impose requirements on the stack that increase with depth of

embedding because near the middle of such sentences there is neither a compact
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(26b): 0 the 1 rat 2 the 3 cat 4 chased 5 fled 6

Transition Rule used Configuration

— — (S, 0)
predict S → NP VP (NP VP, 0)
predict NP → D N ORC (D N ORC VP, 0)
match D → the (N ORC VP, 1)
match N → rat (ORC VP, 2)
predict ORC → NP V (NP V VP, 2)
predict NP → D N (D N V VP, 2)
match D → the (N V VP, 3)
match N → cat (V VP, 4)
match V → chased (VP, 5)
predict VP → V (V, 5)
match V → fled (ε, 6)

(26c): 0 the 1 rat 2 the 3 cat 4 the 5 dog 6 bit 7 chased 8 fled 9

Transition Rule used Configuration

— — (S, 0)
predict S → NP VP (NP VP, 0)
predict NP → D N ORC (D N ORC VP, 0)
match D → the (N ORC VP, 1)
match N → rat (ORC VP, 2)
predict ORC → NP V (NP V VP, 2)
predict NP → D N ORC (D N ORC V VP, 2)
match D → the (N ORC V VP, 3)
match N → cat (ORC V VP, 4)
predict ORC → NP V (NP V V VP, 4)
predict NP → D N (D N V V VP, 4)
match D → the (N V V VP, 5)
match N → dog (V V VP, 6)
match V → bit (V VP, 7)
match V → chased (VP, 8)
predict VP → V (V, 8)
match V → fled (ε, 9)

Table 6: The effect of center-embedding on top-down parsing. Memory load increases as embed-
ding depth increases: maximum of 4 symbols for (26b) but 5 symbols for (26c).

(24b): 0 John 1 ’s 2 dog 3 fled 4

Transition Rule used Configuration

— — (S, 0)
predict S → NP VP (NP VP, 0)
predict NP → NP POSS N (NP POSS N VP, 0)
match NP → John (POSS N VP, 1)
match POSS → ’s (N VP, 2)
match N → dog (VP, 3)
predict VP → V (V, 3)
match V → fled (ε, 4)

(24c): 0 John 1 ’s 2 wife 3 ’s 4 dog 5 fled 6

Transition Rule used Configuration

— — (S, 0)
predict S → NP VP (NP VP, 0)
predict NP → NP POSS N (NP POSS N VP, 0)
predict NP → NP POSS N (NP POSS N POSS N VP, 0)
match NP → John (POSS N POSS N VP, 1)
match POSS → ’s (N POSS N VP, 2)
match N → wife (POSS N VP, 3)
match POSS → ’s (N VP, 4)
match N → dog (VP, 5)
predict VP → V (V, 5)
match V → fled (ε, 6)

Table 7: The effect of left-embedding on top-down parsing. Memory load increases as embedding
depth increases: maximum of 4 symbols for (24b) but 6 symbols for (24c).

(25b): 0 Mary 1 chased 2 the 3 cat 4 that 5 bit 6 the 7 rat 8

Transition Rule used Configuration

— — (S, 0)
predict S → NP VP (NP VP, 0)
match NP → Mary (VP, 1)
predict VP → V NP (V NP, 1)
match V → chased (NP, 2)
predict NP → D N SRC (D N SRC, 2)



match D → the (N SRC, 3)
match N → cat (SRC, 4)
predict SRC → C VP (C VP, 4)
match C → that (VP, 5)
predict VP → V NP (V NP, 5)
match V → bit (NP, 6)
predict NP → D N (D N, 6)
match D → the (N, 7)
match N → rat (ε, 8)

(25c): 0 Mary 1 chased 2 the 3 cat 4 that 5 bit 6 the 7 rat 8 that 9 ate 10 the 11 cheese 12

Transition Rule used Configuration

— — (S, 0)
predict S → NP VP (NP VP, 0)
match NP → Mary (VP, 1)
predict VP → V NP (V NP, 1)
match V → chased (NP, 2)
predict NP → D N SRC (D N SRC, 2)



match D → the (N SRC, 3)
match N → cat (SRC, 4)
predict SRC → C VP (C VP, 4)
match C → that (VP, 5)
predict VP → V NP (V NP, 5)
match V → bit (NP, 6)
predict NP → D N SRC (D N SRC, 6)



match D → the (N SRC, 7)
match N → rat (SRC, 8)
predict SRC → C VP (C VP, 8)
match C → that (VP, 9)
predict VP → V NP (V NP, 9)
match V → ate (NP, 10)
predict NP → D N (D N, 10)
match D → the (N, 11)
match N → cheese (ε, 12)

Table 8: The effect of right-embedding on top-down parsing. No increase in memory load as
embedding depth increases: maximum of 3 symbols in both cases.
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representation in terms of already-processed constituents (see Table 2 nor one in terms of

predicted constituents (see Table 6).

These facts about the workings of the top-down parser therefore mean that under the

new linking hypothesis in (36), we make correct predictions regarding right-branching

structures and center-embedding structures, but an incorrect prediction regarding

left-branching structures.29

(36) A speaker processing the string PHON(t) will experience greater perceptual difficulty

the greater MaxStackTD(t) is.

Again there is of course the option of attributing the blame to the grammar, rather than

this linking hypothesis: given independent strong evidence that (36) were correct, we might

prefer to modify our hypothesized grammar (e.g. perhaps attributing right-branching

structures to the sentences in (24)). But in the next subsection we will see that there is a

different linking hypothesis we can combine with this existing grammar that correctly

accounts for all of the embedding facts we have discussed.

3.3 Left-corner parsing

As foreshadowed above, the left-corner parsing method can be seen as a “best of both

worlds” mixture of bottom-up and top-down processing, incorporating the advantages of

both: the efficient handling of left-branching structures via compact memory

representations of already-consumed constituents, and the efficient handling of

right-branching structures via compact memory representations of predicted constituents.

Configurations still take the form of a stack paired with a buffer, but the stack can store

two different kinds of symbols: “barred” versions of nonterminal symbols (e.g. NP, VP)

which, like all symbols stored by a top-down parser, represent constituents predicted in the

remaining portion of a sentence, and “plain”/“unbarred” nonterminal symbols (e.g. NP,

29This is essentially the proposal in Yngve (1960).
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VP) which, like all symbols stored by a bottom-up parser, represent constituents formed

from the already-consumed portion.30

The left-corner parsing method is defined in (37). The starting configuration has S on

the stack, analogous to the starting configuration for top-down parsing; the goal is to fulfill

this prediction. The top of the stack is on the left. The shift and match transitions are

essentially identical to the transitions of the same names in the previous systems: note that

shift consumes a word and adds corresponding a bottom-up (i.e. “unbarred”) nonterminal

symbol to the stack, and match consumes a word and removes a corresponding top-down

(“barred”) nonterminal symbol from the stack. These two simple types of transitions deal

with rules that have only terminal symbols on the right-hand side (i.e. rules of the form

‘X → w’). The other two types of transitions, lc-predict and lc-connect, deal with

rules that have nonterminal symbols on the right-hand side (i.e. rules of the form

‘X → Y1 . . . Ym’); these transitions are more complex because they deal with the interplay

between constituents recognized bottom-up (plain symbols) and constituents predicted

top-down (barred symbols).

(37) Given a sentence w1 . . . wn to be parsed and a grammar:

• starting configuration: (S, |w1 . . . wn)

• goal configuration: (ε, w1 . . . wn | )

• shift transitions: (Σ, w1 . . . |wi . . . wn) =⇒ (XΣ, w1 . . . wi | . . . wn)

if there is a rule X → wi in the grammar

• match transitions: (XΣ, w1 . . . |wi . . . wn) =⇒ (Σ, w1 . . . wi | . . . wn)

if there is a rule X → wi in the grammar

• lc-predict transitions:

(Y1Σ, w1 . . . | . . . wn) =⇒ (Y2 . . . YmXΣ, w1 . . . | . . . wn)

if there is a rule X → Y1 . . . Ym in the grammar

30This bar notation has nothing to do with X-bar theory.
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• lc-connect transitions:

(Y1XΣ, w1 . . . | . . . wn) =⇒ (Y2 . . . YmΣ, w1 . . . | . . . wn)

if there is a rule X → Y1 . . . Ym in the grammar

(where Σ is a placeholder for sequences of nonterminal symbols)

An example to illustrate is shown in Table 9.

Type of step Rule used Configuration

0 — — (S, | the dog chased the cat)
1 shift D → the (D S, the | dog chased the cat)
2 lc-predict NP → D N (N NP S, the | dog chased the cat)
3 match N → dog (NP S, the dog | chased the cat)
4 lc-connect S → NP VP (VP, the dog | chased the cat)
5 shift V → chased (V VP, the dog chased | the cat)
6 lc-connect VP → V NP (NP, the dog chased | the cat)
7 shift D → the (D NP, the dog chased the | cat)
8 lc-connect NP → D N (N, the dog chased the | cat)
9 match N → cat (ε, the dog chased the cat | )

Table 9

The shift transitions do bottom-up work, and only manipulate “plain” symbols

(e.g. D at Step 1, V at Step 5); the match transitions do top-down work, and only

manipulate “barred” symbols (e.g. N at Step 3). The lc-predict transitions and

lc-connect transitions both “trade in” a bottom-up recognized nonterminal (no bar) for

some number of predictions (with bars) corresponding to that nonterminal’s hypothesized

sisters, according to some chosen grammar rule; the left-corner of a context-free rule is the

first symbol on the right hand side, and it is the chosen grammar rule’s left-corner that is

“traded in” by these transitions. When lc-predict applies in Step 2, for example, the

already-recognized D is hypothesized to be the left-corner of an NP constituent expanded

according to the rule ‘NP → D N’; it is therefore traded in for a predicted N, accompanied

by a bottom-up NP symbol that will be available to work with if that prediction of an N is

fulfilled. When lc-connect applies in Step 4, the recognized NP (left-corner of the rule ‘S

→ NP VP’) is similarly traded in for a predicted VP; what makes lc-connect different is
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Y1 =⇒
X

Ym
. . .

Y2Y1

X

Y1

=⇒ X

Ym
. . .

Y2Y1

=⇒D
NP

ND =⇒VP

V

VP

NPV

=⇒D S N NP S

(Step 2)

=⇒V VP NP

(Step 6)

lc-predict lc-connect

Figure 3: Graphical illustration of lc-predict and lc-connect. The general
form of each, corresponding to the appropriate parts of the definition in (37), is
shown at the top. The bottom shows two instantiations of this general form that
appear in Table 9.

that we put this recognized NP towards the satisfaction of an already predicted instance of

the parent nonterminal (here, S), so we remove this symbol from the stack rather than

adding a bottom-up instance of this parent nonterminal.

A graphical illustration of the relationship between lc-predict and lc-connect is

shown in Figure 3. The latter gets its name from the fact that it connects the part of the

tree that’s growing upwards from the words with the part that’s growing downwards.

The left-corner parsing system thus has the ability to mix together bottom-up

representations of consituents in the already-seen part of the sentence and top-down

representations of constituents predicted in the unseen part of the sentence. Note that in

Table 9, there are compact one-symbol representations of the parser’s state after consuming
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‘the dog’ (the single VP symbol after Step 4) and after consuming ‘the dog chased’ (the

single NP symbol after Step 6), as was the case for the top-down parser; but in addition, it

also has a compact representation of the state after consuming ‘the dog’ in terms of the

recognized NP after Step 3, as was the case for the bottom-up parser. (The fact that there

is an additional S symbol on the stack at that point is an unfortunate distraction: this is a

simply “constant-sized” indicator that we have not connected with the overall predicted S

node yet, and does not grow with the depth of left-embedding as; see Table 11.31)

This ability to use a single symbol both in situations where the seen portion of the

sentence forms a constituent and where the unseen portion of the sentence forms a

constituent, allows the left-corner parser to mimic the bottom-up parser’s efficient

treatment of left-branching structures and mimic the top-down parser’s efficient treatment

of right-branching structures. Table 11 shows how the stack contents are the same after

‘John’ and after ‘John ’s dog’ (on the left) and after ‘John’ and ‘John ’s wife’ and ‘John ’s

wife ’s dog’ (on the right); a single bottom-up NP symbol can do the same work in all of

these cases (in addition to the waiting prediction S), creating the familiar looping pattern.

And Table 12 shows a similar looping pattern for right-branching structures: at the points

after ‘chased’ and ‘bit’ and ‘ate’, a single top-down NP symbol encapsulates all of the

parser’s internal state. But just as neither the bottom-up nor top-down method produced

this kind of looping pattern on center-embedding structures, maximum stack depth for the

left-corner parser increases with the depth of embedding for these sentences, as shown in

Table 10.32

The stack size requirements for left-corner parsing therefore show the following

31One can flip things around so that there is one extra symbol on the stack after the root S node has
been created rather than before, by setting the start configuration to have the empty stack and the goal
configuration to have a bottom-up S. The effect is just that the relevant instance of lc-connect “in the
middle”, eliminating S, is replaced by a corresponding instance of lc-predict, introducing S.

32The underlying point here on which the overall argument relies is that only center-embedding structures
yield the kind of nesting patterns in strings that are beyond the reach of a finite-state machine (e.g. Chomsky,
1963, pp.394–395). The finitely many configurations that are visited in the course of parsing an arbitrarily
large left-branching or right-branching structure can by simulated by a finite-state machine.
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pattern:

MaxStackLC(tree for (24b)) = MaxStackLC(tree for (24c)) (left-branching)

MaxStackLC(tree for (25b)) = MaxStackLC(tree for (25c)) (right-branching)

MaxStackLC(tree for (26b)) < MaxStackLC(tree for (26c)) (center-embedding)

which in combination with the linking hypothesis that

(38) A speaker processing the string PHON(t) will experience greater perceptual difficulty

the greater MaxStackLC(t) is.

produces the full range of predictions that we set out to achieve.

3.4 Take-home messages

Having looked at the specifics of these context-free parsing methods in some depth, what

have we learnt? There are a few take-home messages.

• The main goal is to convey a sense of what it is that one needs to add to a grammar

to produce a theory of sentence comprehension: what needs to be added is what the

bottom-up, top-down and left-corner methods all manage to add to (23). The

grammar partially determines what the resulting combined system does: it should be

clear that the grammar does not fully determine it, since we have seen three distinct

options, each with different empirical pros and cons (while leaving the grammar

unchanged). There are of course alternatives to breaking down the sentence

comprehension system into two components with the shapes that I have outlined —

including, for example, the option of not breaking down it into any two components

thought of as a “grammar” and a “parser” at all, as proposed by Phillips (1996). But

to the extent that one would like to take as a starting point a grammar in the sense

that has (for better or for worse) become conventional, things have already been
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(26b): 0 the 1 rat 2 the 3 cat 4 chased 5 fled 6

Transition Rule used Configuration

— — (S, 0)
shift D → the (D S, 1)
lc-predict NP → D N ORC (N ORC NP S, 1)
match N → rat (ORC NP S, 2)
shift D → the (D ORC NP S, 3)
lc-predict NP → D N (N NP ORC NP S, 3)
match N → cat (NP ORC NP S, 4)
lc-connect ORC → NP V (V NP S, 4)
match V → chased (NP S, 5)
lc-connect S → NP VP (VP, 5)
shift V → fled (V VP, 6)
lc-connect VP → V (ε, 6)

(26c): 0 the 1 rat 2 the 3 cat 4 the 5 dog 6 bit 7 chased 8 fled 9

Transition Rule used Configuration

— — (S, 0)
shift D → the (D S, 1)
lc-predict NP → D N ORC (N ORC NP S, 1)
match N → rat (ORC NP S, 2)
shift D → the (D ORC NP S, 3)
lc-predict NP → D N ORC (N ORC NP ORC NP S, 3)
match N → cat (ORC NP ORC NP S, 4)
shift D → the (D ORC NP ORC NP S, 5)
lc-predict NP → D N (N NP ORC NP ORC NP S, 5)
match N → dog (NP ORC NP ORC NP S, 6)
lc-connect ORC → NP V (V NP ORC NP S, 6)
match V → bit (NP ORC NP S, 7)
lc-connect ORC → NP V (V NP S, 7)
match V → chased (NP S, 8)
lc-connect S → NP VP (VP, 8)
shift V → fled (V VP, 9)
lc-connect VP → V (ε, 9)

Table 10: The effect of center-embedding on left-corner parsing. Memory load increases as
embedding depth increases: maximum of 5 symbols for (26b) but 7 symbols for (26c).

(24b): 0 John 1 ’s 2 dog 3 fled 4

Transition Rule used Configuration

— — (S, 0)
shift NP → John (NP S, 1)
lc-predict NP → NP POSS N (POSS N NP S, 1)

match POSS → ’s (N NP S, 2)
match N → dog (NP S, 3)
lc-connect S → NP VP (VP, 3)
shift V → fled (V VP, 4)
lc-connect VP → V (ε, 4)

(24c): 0 John 1 ’s 2 wife 3 ’s 4 dog 5 fled 6

Transition Rule used Configuration

— — (S, 0)
shift NP → John (NP S, 1)
lc-predict NP → NP POSS N (POSS N NP S, 1)

match POSS → ’s (N NP S, 2)
match N → wife (NP S, 3)
lc-predict NP → NP POSS N (POSS N NP S, 3)

match POSS → ’s (N NP S, 4)
match N → dog (NP S, 5)
lc-connect S → NP VP (VP, 5)
shift V → fled (V VP, 6)
lc-connect VP → V (ε, 6)

Table 11: The effect of left-embedding on left-corner parsing. No increase in memory load as
embedding depth increases: maximum of 4 symbols in both cases.

(25b): 0 Mary 1 chased 2 the 3 cat 4 that 5 bit 6 the 7 rat 8

Transition Rule used Configuration

— — (S, 0)
shift NP → Mary (NP S, 1)
lc-connect S → NP VP (VP, 1)
shift V → chased (V VP, 2)
lc-connect VP → V NP (NP, 2)
shift D → the (D NP, 3)



lc-connect NP → D N SRC (N SRC, 3)
match N → cat (SRC, 4)
shift C → that (C SRC, 5)
lc-connect SRC → C VP (VP, 5)
shift V → bit (V VP, 6)
lc-connect VP → V NP (NP, 6)
shift D → the (D NP, 7)
lc-connect NP → D N (N, 7)
match N → rat (ε, 8)

(25c): 0 Mary 1 chased 2 the 3 cat 4 that 5 bit 6 the 7 rat 8 that 9 ate 10 the 11 cheese 12

Transition Rule used Configuration

— — (S, 0)
shift NP → Mary (NP S, 1)
lc-connect S → NP VP (VP, 1)
shift V → chased (V VP, 2)
lc-connect VP → V NP (NP, 2)
shift D → the (D NP, 3)



lc-connect NP → D N SRC (N SRC, 3)
match N → cat (SRC, 4)
shift C → that (C SRC, 5)
lc-connect SRC → C VP (VP, 5)
shift V → bit (V VP, 6)
lc-connect VP → V NP (NP, 6)
shift D → the (D NP, 7)



lc-connect NP → D N SRC (N SRC, 7)
match N → rat (SRC, 8)
shift C → that (C SRC, 9)
lc-connect SRC → C VP (VP, 9)
shift V → ate (V VP, 10)
lc-connect VP → V NP (NP, 10)
shift D → the (D NP, 11)
lc-connect NP → D N (N, 11)
match N → cheese (ε, 12)

Table 12: The effect of right-embedding on left-corner parsing. No increase in memory load as
embedding depth increases: maximum of 3 symbols in both cases.
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carved up in a certain way; the bottom-up, top-down and left-corner parsing methods

are examples of things that have the shape of what got carved off to leave behind a

grammar like (23). There is no category error or irreparable clash of perspectives to

be overcome in formulating machinery that bridges the gap between grammars and

algorithmic processing mechanisms, but the task is more difficult to approach if we

do not have a clear picture of exactly what the relevant grammars look like.

• The question of what sequence of steps a parser goes through to arrive at a particular

structural description can be separated from the question of ambiguity resolution.

The first question is whether, for example, a parser arrives at a structural description

for ‘the dog chased the cat’ via the sequence of steps shown in Table 1, Table 5 or

Table 9. The second question concerns any “wrong turns” away from these paths

through the search space are taken; recall the illustration of the late-closure effect in

(33). At least below a certain level of abstraction, the second question presupposes an

answer to the first question. As (33) illustrated, in the context of bottom-up parsing,

the late closure preference amounts to a preference for shift transitions over reduce

transitions; but in the context of top-down parsing it amounts to a relative preference

amongst predict transitions, preferring to use rules with longer right-hand sides

(e.g. VP → V NP) over those with shorter right-hand sides (e.g. VP → V).

• The case study of center-embedding provides a concrete illustration of what it can

look like for a theory to say that a certain sentence violates no grammatical

constraint and yet elicits judgements of unacceptability due to a precisely

characterized form of processing difficulty. A linking hypothesis such as (38) is a

testable “reductionist” account of certain acceptability facts that has the explanatory

force to make predictions about sentences other than those that originally motivated

it (cf. Sprouse et al. 2013; Phillips 2013, pp.159–160).

• In comparison with Section 2, considering specific parsing methods demonstrates the
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lengths to which one does not need to go in order for information-theoretic

complexity metrics to get off the ground. In at least one reasonable sense, the linking

hypotheses in Section 2 concern not how parsing happens, but rather what parsing

achieves; accordingly, they can be described as pertaining to Marr’s (1982)

“computational level”, in contrast to the linking hypotheses in this section which

pertain to the “algorithmic level”.

• A comparison between left-corner parsing on the one hand, and bottom-up and

top-down parsing on the other, reveals a difference in what can be called the

“transparency” of the parser-grammar relation (Berwick and Weinberg, 1984,

pp.39–42). In the case of bottom-up and top-down parsing there is a particularly

direct relationship between grammatical derivations and the steps involved in

parsing, as Kanazawa (2016) emphasizes. Specifically, there is a one-to-one

correspondence between grammatical rules and parsing transitions: parsing a

sentence whose derivation includes a use of the rule ‘NP → D N’, for example, will

necessarily involve a shift step that replaces ‘D N’ with ‘NP’ if done bottom-up, and

will necessarily involve a predict step that replaces ‘NP’ with ‘D N’ if done

top-down. The relationship is less direct in the case of left-corner parsing, however.

Knowing that a certain sentence’s derivation includes a use of the rule ‘NP → D N’

does not allow us to conclude that any particular transition will necessarily be

involved in parsing it with the left-corner system, because this piece of grammatical

structure might be established via an lc-predict transition or via an lc-connect

transition. So in this case, although any given transition the parser takes is licensed

by a particular grammatical rule, the relationship between grammatical rules and

parsing operations is one-to-many.
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4 Connecting to contemporary syntax

In both of the preceding sections, I have used simple finite-state or context-free grammars

for illustrative purposes. Of course modern theories of natural language syntax do not

generally take this form, so it is important to ask how the various information-theoretic

and automata-theoretic concepts outlined in the previous sections can be connected to

more expressive kinds of grammars along the lines of what contemporary syntacticians are

working with. A line of work descending from Stabler (1997) has shed light on this question

as it relates to modern theories in the minimalist tradition, and this is what I will focus on

here. But to a degree that is perhaps surprising, a similar story can be told for other

systems such as Tree Adjoining Grammars (Joshi et al., 1975; Joshi, 1985; Abeillé and

Rambow, 2000; Frank, 2002) and Combinatory Categorial Grammars (Ades and Steedman,

1982; Steedman, 1996, 2000); see Stabler (2011) and Joshi et al. (1990) for discussion.

The crucial underlying issue is to identify exactly how minimalist grammars differ

from CFGs, or exactly what minimalist grammars add to CFGs. An understanding of this

provides a clear picture of what needs to be finessed in order for minimalist grammars to

be plugged in to linking hypotheses of the sorts outlined in the previous sections. Michaelis

(2001) showed that the minimalist grammars formulated in Stabler (1997) are in fact very

similar to CFGs at a certain significant level of abstraction (see also Kobele et al. (2007)).

Since the ways in which the ideas from previous sections relate to CFGs are generally

well-understood, this paved the way for many of these ideas to be adapted to minimalist

grammars.

This means that a certain amount (not all) of the work involved in understanding

how to formulate interesting linking hypotheses for minimalist grammars just is the work

of understanding how to do so for CFGs. The same ideas play important roles. But

understanding exactly how those familiar important ideas fit into the ecosystem of

minimalist grammars involves a certain adjustment of perspective, because of the abstract

level at which the crucial similarities identified by Michaelis reside. In other words, while
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there are objects in the minimalist grammar ecosystem that one can reason about using

the thought patterns that are familiar from CFGs (that is the good news, which makes the

easy part of the task easy), they are not objects that linguists are generally in the habit of

writing down (this is the bad news, which makes the hard part of the task hard). In

particular, there are objects in the minimalist grammar ecosystem that license the same

simple, familiar patterns of reasoning that we naturally apply to CFG trees like the ones in

(28), (29) and (30) above (the good news); but the relevant objects are not, despite surface

similarities, the trees conventionally used to illustrate transformational derivations like the

one in (39) (the bad news).

(39)
CP

C′

TP

AdvP

tomorrow

TP

T′

VP

tV
buy

T
will

DP

N
girl

D
the

C

DP
what

The pivotal property that is familiar from CFGs — and present in an obscured

underlying sense in minimalist grammars — is a certain kind of interchangeability of

subexpressions. Consider the two trees shown in (40), both generated by the grammar used

in Section 3.
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(40) S

VP

PP

NP

N
cat

D
the

P
with

NP
Mary

V
chased

NP

N
dog

D
the

S

VP

NP

N
rat

POSS
’s

NP

N
cat

D
the

V
bit

NP
John

Both contain a node labeled VP. A fundamental consequence of this is that the two

subtrees dominated by those two VP nodes are interchangeable, in the sense that if we

swap one for the other we are guaranteed to get more trees that are well-formed according

to the same grammar. Specifically, we can swap the VP subtrees around to get the two

trees in (41), which are also both generated by the same grammar.

(41) S

VP

NP

N
rat

POSS
’s

NP

N
cat

D
the

V
bit

NP

N
dog

D
the

S

VP

PP

NP

N
cat

D
the

P
with

NP
Mary

V
chased

NP
John

This is a consequence of the way the “goodness as a VP” of a particular

subexpression is independent of the environment in which that subexpression might

appear. When we describe something of the form ‘VP → V NP’ as a context-free rule,

what we are saying is precisely that the right-hand side of the rule is a valid way for a VP

to be constituted no matter what context this VP might be appearing in. Since the phrase

‘bit the cat’s rat’ is good enough to fit under the node labeled VP in the second tree in

(40), it can’t fail to be good enough to fit under the node labeled VP in the first tree in

(41) — it could only fail if there were conditions on “VP-hood” that depended on the

environment into which a putative VP is to be put, but by assumption there are none.
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This kind of modularity of tree structures is exactly what makes CFGs easy to work

with, and plays an important role in operationalizing the linking hypotheses discussed

above in combination with CFGs. Recall from Section 2 the idea of generating a sentence

by generating independently chosen subparts, and the way this is the key point of contact

between a hypothesized grammatical structure and the corresponding range of probability

distributions. The relationship between (40) and (41) could be restated in probabilistic

terms as follows (lazily blurring the distinction between trees and strings for a moment):

since

P (S→ the dog chased Mary with the cat) =

P (S→ NP VP)× P (NP→∗ the dog)× P (VP→∗ chased Mary with the cat)

and

P (S→ John bit the cat’s rat) =

P (S→ NP VP)× P (NP→∗ John)× P (VP→∗ bit the cat’s rat)

we can conclude from the fact that these two sentences have non-zero probabilities that the

six multiplied probabilities on the right-hand sides of these equations are also all non-zero;

and by glueing the pieces together differently we can conclude that

P (S→ the dog bit the cat’s rat) =

P (S→ NP VP)× P (NP→∗ the dog)× P (VP→∗ bit the cat’s rat)
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and

P (S→ John chased Mary with the cat) =

P (S→ NP VP)× P (NP→∗ John)× P (VP→∗ chased Mary with the cat)

are both greater than zero, mirroring the conclusion about categorial grammaticality

above.33

The role that this interchangeability plays in the automata-theoretic models from

Section 3 is perhaps slightly less obvious but still significant. The way in which a parsing

system can process unboundedly large structures of a certain sort involved the presence of

a loop in the contents of the stack. Take, for example, the looping shown in Table 12,

where we return to configurations where the stack contains just a single NP prediction.

The reason that this single stack symbol suffices both after processing only the first two

words ‘Mary chased’ of (25b) and after processing the first six words ‘Mary chased the cat

that bit’ is exactly that the two corresponding remaining portions — ‘the cat that bit the

rat’ and ‘the rat’ — are interchangeable by virtue of both being NPs. Similarly, the looping

shown in Table 3 is a consequence of the way the difference between having consumed

‘John’ and having consumed ‘John’s dog’ is irrelevant to what may come next, precisely

because ‘John’ and ‘John’s dog’ can go in all the same places. Knowing that irrelevant

distinctions like this do not need to be tracked is a key part of what distinguishes a parsing

mechanism from a simple device that is equipped with a lookup table of complete sentences

and merely searches for matches on the basis of its entire input at once.

For comparison, consider now two trees of the sort usually used to represent

33What is actually happening is that we have done the same calculation twice, once in the boolean
semiring and once in the probability semiring; non-zero probability values correspond to the boolean value
true, and zero probability values correspond to the boolean value false. Notice, for example, that the
relevant categorial well-formedness calculation could be stated as follows:

S→∗ the dog bit the cat’s rat if S→ NP VP and NP→∗ the dog and VP→∗ chased the cat’s rat

The deep connection here has far-reaching unifying consequences; see Goodman (1998, 1999).
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minimalist-style derivations.

(42)
CP

C′

TP

AdvP

tomorrow

TP

T′

VP

tV
buy

T
will

DP

N
girl

D
the

C

DP
what

CP

TP

AdvP

tomorrow

TP

T′

VP

DP
it

V
buy

T
will

DP

N
girl

D
the

C

Notice that, following the usual assumptions within transformational grammar, both

of the trees in (42) contain a node labeled VP, just as the two trees in (40) did. But here,

this does not license a conclusion that a certain subpart of one tree can be swapped with

the other.34 The simple VP ‘buy it’ in the tree on the right cannot be substituted for any

corresponding constituent in the left tree. And there is no “VP constituent” of the tree on
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the left that can be substituted into the corresponding position on the right. (It doesn’t

matter whether we imagine that the VP constituent in the left tree contains both the

moved phrase ‘what’ and its trace, or only the trace: if we take the relevant constituent to

include both, then the head of this chain will have no appropriate slot to fit into since the

tree on the right has a non-interrogative C head; if we take the relevant constituent to

include only the trace, then we will have something equivalent to an unbound trace.)

While both trees have a node labeled VP, they do not have any corresponding

interchangeable subparts in the sense illustrated above for CFGs.

So what it means for a node to be labeled VP (or anything else) in trees of the sort in

(42) is simply not the same as what it means for a node to labeled VP (or anything else) in

trees of the sort in (40). The presence of movement arrows does not only distort the surface

word order — it also puts tangles into the otherwise modular workings of the grammar, and

this modularity was the key to operationalizing the various linking hypotheses discussed

above. Although transformational grammars can in a sense be thought of as the result of

“adding movement to a CFG”, this does not mean that the parts of the trees in (42) that

are not movement arrows can be understood exactly as all of the tree structure in (40) can.

This is, as I mentioned above, the bad news; a shift in perspective is required. The

good news is that there does exist a different way of saying what the parts of ‘what the girl

will buy tomorrow’ are and giving labels to those parts, such that parts with the same

labels can be interchanged just as they could in CFGs.35 The tree that says what those

parts are, what labels they have, and how they are put together, is shown on the left in

(43). The perspective that we are switching to does not require any changes to how we

think of movement-free derivations, so the second tree in (43) is the same as the second

tree in (42).

34This is in effect the point that motivates the decision, in GPSG and its descendants (Gazdar, 1981;
Gazdar et al., 1985), to not give these nodes the same label: in these frameworks, the node labeled VP in
the left tree in (42) would instead have the label VP/NP. I return to a comparison between the approach in
the main text and that of GPSG below.
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(43)
CP

C′,-wh

TP,-wh

AdvP

tomorrow

TP,-wh

T′,-wh

VP,-wh

DP[-wh]
what

V
buy

T
will

DP

N
girl

D
the

C

CP

TP

AdvP

tomorrow

TP

T′

VP

DP
it

V
buy

T
will

DP

N
girl

D
the

C

The fact that the derivation on the left has no subpart that can be interchanged with the

VP ‘buy it’ is now accurately reflected in the fact that no node in the left tree shares this

label. Writing ‘DP[-wh]’ rather than ‘DP’ as the label for ‘what’ simply says that it is the

kind of thing that undergoes wh-movement. When we write things like ‘VP,-wh’ and

‘TP,-wh’, we are indicating the parts of the tree that, due to the tangles introduced by

movement, are not interchangeable with subparts that simply bear the labels ‘VP’ and

‘TP’. By encoding the fact that the tangling extends up as high as the C′,-wh node but not

the CP node immediately above it, these annotations also encode the fact that the CP

expression was constructed out of the C′,-wh expression in a way that involved resolving

the tangle — in other words, by satisfying the requirement that ‘what’ undergoes
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wh-movement — so there is no need to also draw a line connecting the CP node to ‘what’.

Such trees not only bring to the surface the fact that nothing in the left tree can be

interchanged with ‘buy it’, they also make transparent the interchangeability relations that

the expression constructed out of ‘buy’ and ‘what’ does participate in. The corresponding

tree for ‘which book John should read’ is shown in (44).

(44) CP

C′,-wh

TP,-wh

T′,-wh

VP,-wh

DP[-wh]

N
book

D[-wh]
which

V
read

T
should

DP
John

C

This tree does have a node labeled ‘VP,-wh’, and this now does license the conclusion that

certain other expressions will inevitably be grammatical. Specifically, we can swap around

this subtree with the one bearing the same label in the tree on the left in (43), to produce

these new grammatical trees:

35Stabler (2011, p.624) mentions the crucial partitioning of expressions in a minimalist grammar. This is
analogous to the way a CFG creates a partition of possible expressions where two expressions belong to the
same equivalence class if and only if they are derived from the same nonterminal. In an FSA, the analogous
concept is highlighted by the Myhill-Nerode Theorem (Hopcroft and Ullman, 1979, p.65).
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(45) CP

C′,-wh

TP,-wh

AdvP

tomorrow

TP,-wh

T′,-wh

VP,-wh

DP,-wh

N
book

D[-wh]
which

V
read

T
will

DP

N
girl

D
the

C

CP

C′,-wh

TP,-wh

T′,-wh

VP,-wh

DP[-wh]
what

V
buy

T
should

DP
John

C

What is happening here is that we are re-arranging the pieces of the two expressions

(46) a. what the girl will buy tomorrow

(i.e. left tree in (43))

b. which book John should read

(i.e. tree in (44))

to yield the pair

(47) a. which book the girl will read tomorrow

(i.e. left tree in (45))

b. what John should buy (i.e. right tree in (45))
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in just the same way we did for the CFG trees above. The pieces being swapped, indicated

by boxes in the trees above, do not correspond to contiguous portions of the eventual

linearized strings as they do with CFGs — but to get too distracted by this detail would be

to focus unduly on these strings rather than the structure-building machinery of the

grammar.

The trees in (43), (44) and (45) can be described as derivation trees. By adopting

this representation, we focus attention on the way independently chosen pieces were

snapped together to form a larger whole. What (45) highlights is the fact that the object

that we get by combining ‘buy’ and ‘what’ can be used in all the same ways as the one we

get by combining ‘read’ with the combination of ‘which’ and ‘book’; the relationship

between these objects and final surface word-order is not straightforward, but what

matters is that it is the same for both of them. The trees in (42), in contrast, give priority

to surface constituency over “combinability”. In the case of a CFG one need not choose

between which of these two properties to focus on, because the two are conflated — or

perhaps we should say confounded. The minimalist grammar derivation trees bear a

significant resemblance to T-markers in early transformational grammar (e.g. Chomsky,

1965, p.130), including the way binary-branching nodes represent operations that combine

two expressions (i.e. generalized transformations) and unary-branching nodes represent

operations that adjust the surface word order of an existing expression (i.e. singulary

transformations); see Hunter (to appear b) for related discussion. They focus attention on

what the grammar generates and how it generates those things — and to what the degree

the way it generates this thing might overlap with the way it generates that thing — rather

than how those things are pronounced. The perspective they provide is therefore in line

with the recent trend in minimalist syntax towards thinking of externalization as a

relatively incidental aspect of the human language system. Abandoning the simple and

familiar relationship between externalization and structure exhibited by CFG trees is

arguably an overdue step that needs to be taken in order to bring our thinking fully into
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line with the fact that natural language grammars are not CFGs; perhaps adding

movement arrows like in (42) was a temporarily useful cheap quick-fix.

In short, derivation trees allow us to think about the range of possibilities allowed by

a minimalist grammar in exactly the same modular, tractable way that we think about the

range of possibilities allowed by a CFG.36

As an aside: the trees in (43), (44) and (45) bear a significant resemblance to the

“slash-passing” trees used in GPSG and its descendants (Gazdar, 1981; Gazdar et al.,

1985). In both approaches, a “moving” constituent occupies only a single position in the

tree structure, with the dependency between that position and the other end of its

movement chain encoded on all intervening node labels. A crucial difference, however, is

that the derivation trees here place moving constituents in their “base” positions, with

their “target” positions encoded only indirectly, whereas slash-passing does the reverse,

representing surface positions explicitly and encoding base positions indirectly. A

consequence of this difference is that slash-passing cannot express remnant movement

patterns (Stabler, 2011, p.626), and it is exactly the capacity of the minimalist derivation

trees to express remnant movement that allows them to account for non-context-free

patterns (Kobele, 2010) such as crossing dependencies in Swiss German (Shieber, 1985).

For work that has combined minimalist grammars with the information-theoretic

linking hypotheses from Section 2 (e.g. Hale, 2003, 2006; Yun et al., 2015), this firm grasp

on the range of possibilities essentially provides an immediate solution to the question of

how to formulate probability distributions over derivations: just do to the trees in (43) and

(44) what is standardly done to CFG trees; see e.g. Yun et al. (2015, §4). Various more

elaborate approaches to defining probability distributions over a CFG can also be imported

to the minimalist grammar case (Hunter and Dyer, 2013), but the underlying CFG-like

36What has been made more complicated by the shift away from trees like (42) is essentially the issue
of linearization, and so this is where the finessing and adapting mentioned at the beginning of this section
remains to be done. The crucial ingredient for addressing these complications is the equivalence between
minimalist grammars and multiple context-free grammars (Seki et al., 1991; Kallmeyer, 2010; Clark, 2014).
See Stabler (2013) and Hunter and Dyer (2013, §2) for explanations of this connection.
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structure is what makes all of this possible.

As regards adapting the parsing methods from Section 3 to minimalist grammars,

Stabler (2013) presented a “top-down minimalist parser” that in a sense does to the trees

in (43) and (44) what the top-down method described in Section 3 does to standard CFG

trees. This system has been used as the basis for for formulating and testing linking

hypotheses along the lines of the stack-depth idea (e.g. Kobele et al., 2013; Graf et al.,

2015, 2017). Given the complicated relationship between minimalist derivation trees and

surface word order, Stabler’s relatively direct application of the top-down method yields a

parser that lacks a certain kind of “incrementality” in its treatment of movement

dependencies; see Hunter (to appear a) and Stanojevic and Stabler (2018) for discussion

and different proposals that adapt the left-corner method to minimalist grammars instead.

All of this work frames the parsing question as one of snapping together the modular,

interchangeable parts of trees like those in (43) and (44), in a manner analogous to the way

the parsing methods in Section 3 compose the modular parts of conventional CFG trees.
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