# Tim Hunter Canaan Breiss Bruce Hayes Department of Linguistics, UCLA

# Why phonological factors in sentence distributions?

### Two rival views on the organization of grammar

- 1. Syntax determines which utterances are well-formed; phonology determines how they are realized (Chomsky 1965)
- 2. Different kinds of constraints (e.g. syntactic and phonological) jointly determine well-formedness of utterances (Sadock 1991, Jackendoff 1997, Bresnan 2000)

Three kinds of evidence favor Option 2.

## Evidence I: Unacceptability for phonological reasons

Norwegian (Rice 2007):

\*SONORITYSEQUENCING

- (1) Sykl opp bakken bike up the.hill "Bike up the hill!"
- \* Sykl ned bakken bike down the hill "Bike down the hill!"

This is not possible if phonology determines only how to realize what syntax gives it.

### **Evidence II: Choices among alternative constructions**

Speakers whose grammar offers paired choices statistically prefer the phonologically unmarked one.

Example from Shih (2017):

----\*CLASH

(3) the whéel of the  $c\acute{ar} \gg$  the  $c\acute{ar}$ 's whéel

See also Shih & Zuraw 2017, Antilla et al 2010, Shih & Graffmiller 2011, Shih et al 2015, Ryan 2018, Benor & Levy 2006, Gunkel & Ryan 2011

# Evidence III: Statistical modeling in large corpora

Breiss and Hayes (submitted) model the frequency of word bigrams in spoken and written texts.

Multinomial logistic regression shows that authors/speakers prefer bigrams that obey, e.g.:

- \*CLASH (adjacent stresses)
- \*IAMBICCLASH (iambically-stressed before stress, e.g. *maróon swéater*)
- \*CCC (triple cluster)
- \*HIATUS (adjacent vowels)

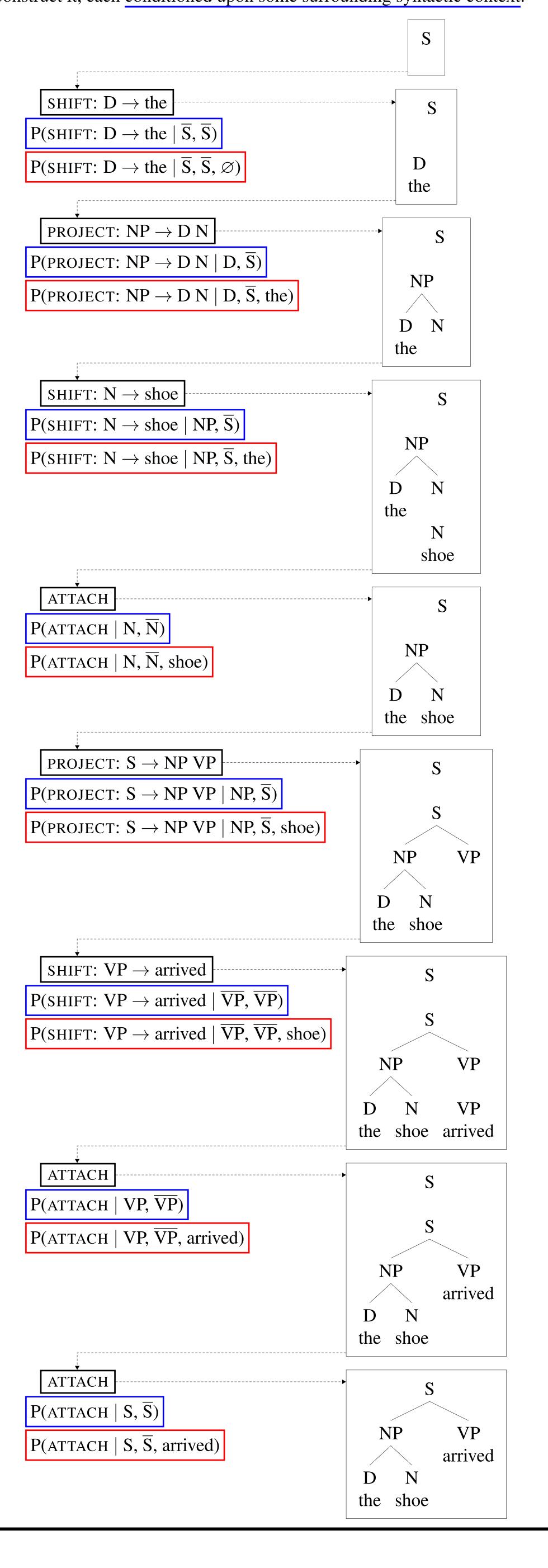
relative to what would be expected from the two words' unigram frequencies.

# Goal: an integrated model, deploying phonological and syntactic constraints in parallel

Much thinking is still needed about what the detailed architecture might be — let's try something concrete.

Intended advantages:

- Better testing of phonology: a full model will better evaluate our hypothesis that phonological markedness affects sentence probability.
- Better testing of syntax: a full model will let syntacticians control for phonological effects.


What qualities should such a model have?

- It should assign **probabilities** to sentences, depending on both syntactic and phonological principles.
- We should be able to fit its parameters to data for quantitative testing.

# A tree-building model: Probabilistic left-corner grammars

Manning & Carpenter (1997) define probabilistic left-corner grammars (PLCGs):

- A tree determines a unique sequence of generative actions that construct it left-to-right.
- The probability of a tree is the product of the probabilities of the actions that construct it, each conditioned upon some surrounding syntactic context.



# Our integrated probability model

We <u>include the most recent word in the conditioning context</u>, and use this to define the conditional probabilities of the PLCG's actions to be sensitive to not only

- the syntactic goodness of the hierarchical structure being built, but also
- the phonological goodness of any word junctures being created.

|                                                                            | Action                          | Context                                     |         | Property vector          |         |
|----------------------------------------------------------------------------|---------------------------------|---------------------------------------------|---------|--------------------------|---------|
|                                                                            |                                 | top goal                                    | word    | Standard PLCG parameters | *HIATUS |
| $\rightarrow$                                                              | SHIFT: $D \rightarrow the$      | $\overline{S}$ $\overline{S}$               | Ø       | 1 0 0 0 0 0 0            | 0       |
| $\rightarrow$                                                              | PROJECT: $NP \rightarrow D N$   | $\overline{S}$                              | the     | 0 1 0 0 0 0 0 0          | 0       |
| $\rightarrow$                                                              | SHIFT: $N \rightarrow shoe$     | NP S                                        | the     | 0 0 1 0 0 0 0 0          | 0       |
| $\rightarrow$                                                              | ATTACH                          | $N \overline{N}$                            | shoe    | 0 0 0 1 0 0 0 0          | 0       |
| $\rightarrow$                                                              | PROJECT: $S \rightarrow NP VP$  | NP S                                        | shoe    | 0 0 0 0 1 0 0 0          | 0       |
| $\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;$ | SHIFT: $VP \rightarrow arrived$ | $\overline{ m VP}$ $\overline{ m VP}$       | shoe    | 0 0 0 0 1 0 0            | 1       |
|                                                                            | SHIFT: $VP \rightarrow arrived$ | $\overline{	ext{VP}}$ $\overline{	ext{VP}}$ | toe     | 0 0 0 0 1 0 0            | 1       |
|                                                                            | SHIFT: $VP \rightarrow arrived$ | $\overline{	ext{VP}}$ $\overline{	ext{VP}}$ | boot    | 0 0 0 0 1 0 0            | 0       |
|                                                                            | SHIFT: $VP \rightarrow arrived$ | $\overline{	ext{VP}}$ $\overline{	ext{VP}}$ | sock    | 0 0 0 0 1 0 0            | 0       |
| $\rightarrow$                                                              | ATTACH                          | VP VP                                       | arrived | 0 0 0 0 0 1 0            | 0       |
| $\rightarrow$                                                              | ATTACH                          | $S \overline{S}$                            | arrived | 0 0 0 0 0 0 1            | 0       |
|                                                                            |                                 |                                             |         |                          |         |

 $harmony(action, context) = \sum_{i} (feature_i(action, context) \times weight_i)$ 

 $Pr(action \mid context) = \frac{exp(harmony(action, context))}{\sum_{a} exp(harmony(a, context))}$ 

 $Pr(SHIFT : VP \rightarrow arrived \mid \overline{VP}, \overline{VP}, shoe) = \frac{exp(harmony(SHIFT : VP \rightarrow arrived, (\overline{VP}, \overline{VP}, shoe)))}{\sum_{a} exp(harmony(a, (\overline{VP}, \overline{VP}, shoe)))}$ 

#### Results

We test by setting parameters to maximize likelihood of observed data, and comparing the fit of

- a phonologically-unaware baseline PLCG, and
- our phonologically-aware model.

The results below are based on sections wsj00-wsj04 of the Penn Treebank (9648 sentences), but results on other five-section samples are very similar.

Given this corpus, a straightforwardly-induced PLCG baseline model has 52173 parameters; each phonologically-aware variant adds one to this, for the weight of the tested phonological constraint.

|                                            | Log-likelihood | Delta log-likelihood | $\chi^2$ test              |
|--------------------------------------------|----------------|----------------------|----------------------------|
| PLCG baseline                              | -1562286       |                      |                            |
| ■ PLCG + *IAMBICCLASH                      | -1562252       | 34                   | 1                          |
| PLCG + *HIATUS                             | -1562159       | 127                  | $p = 3.49 \times 10^{-57}$ |
| ■ PLCG + artificial ASCII code calculation | -1562284       | 2                    | p = 0.0455                 |

We compare this with the results of adopting a unigram model for sentences, versus analogous phonologically-aware variants:

|                                             | Log-likelihood | Delta log-likelihood | $\chi^2$ test               |
|---------------------------------------------|----------------|----------------------|-----------------------------|
| Unigram baseline                            | -1761162       |                      |                             |
| Unigram + *IAMBICCLASH                      | -1760874       | 288                  | $p = 2.78 \times 10^{-127}$ |
| Unigram + *HIATUS                           | -1760767       | 395                  | $p = 8.06 \times 10^{-174}$ |
| Unigram + artificial ASCII code calculation | -1761123       | 39                   | $p = 1.03 \times 10^{-18}$  |

### Conclusion

- There is work for phonological constraints to do, even when we incorporate a more realistic model of sentence probabilities than unigrams.
- Some of the work that would be attributed to phonology in the context of the unigram sentence model (e.g. delta of 288 for \*IAMBICCLASH) get taken over by the tree-based PLCG (delta down to 34).
- We now have a working system that we can scale up and extend to investigate other constraints.