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Learning and wrap-up



Grammatical formalisms and learning Learning with a given grammar Learning with a choice of grammars Conclusion

Motivating question

Components of a learner:

A formalism (“toolkit”) defines a space of grammars for a learner to choose
from
An updating algorithm defines a way to search through such a space
(in response to provided input)

Given two formalisms, F1 and F2, can we construct a learner which

reaches one end-state when used with F1, and
reaches a different end-state when used with F2?

With everything else held fixed:

same (strong) generative capacity
same updating algorithm
same training data
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Formalism F1

G1

G2

G3

Formalism F2

G ′1

G ′2

G ′3

A “good sentence vs. bad sentence” learner will treat these two formalisms equivalently —
it won’t “see” the internal differences in how they generate what they generate.

(Gibson and Wexler 1994)

Q: How can we provide traction between the learning algorithm and the internals of each
G?

A: Probabilities
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Learning scenario

Training corpus: some combination of occurrences of the following.

boys will shave boys will shave themselves
who will shave who will shave themselves
foo boys will shave

The learner knows correct analyses of these sentences, with ‘foo’ as a
determiner.
The learner must decide what probabilities to attach to these known sentences.
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MGs
G

ĝ

IMGs
G

ĝ

Training corpus:
10 boys will shave
2 boys will shave themselves
3 who will shave
1 who will shave themselves
5 foo boys will shave
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MGs
G

ĝ

IMGs
G

ĝ

Training corpus:
10 boys will shave
2 boys will shave themselves
3 who will shave
1 who will shave themselves
5 foo boys will shave

Grammar’s distribution:
0.35478 boys will shave
0.35478 foo boys will shave
0.14801 who will shave
0.05022 boys will shave themselves
0.05022 foo boys will shave themselves
0.04199 who will shave themselves

Grammar’s distribution:
0.35721 boys will shave
0.35721 foo boys will shave
0.095 who will shave
0.095 who will shave themselves
0.04779 boys will shave themselves
0.04779 foo boys will shave themselves
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MGs
G

ĝ

IMGs
G

ĝ

Training corpus:
10 boys will shave
2 boys will shave themselves
3 who will shave
1 who will shave themselves
5 foo boys will shave

Entropy Entropy Reduction
— 2.09 —
who 0.76 1.33
will 0.76 0.00
shave 0.76 0.00
themselves 0.00 0.76

Entropy Entropy Reduction
— 2.28 —
who 1.00 1.28
will 1.00 0.00
shave 1.00 0.00
themselves 0.00 1.00
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Learning scenario

Training corpus: some combination of occurrences of the following.

boys will shave boys will shave themselves
who will shave who will shave themselves
foo boys will shave

The learner knows correct analyses of wh-movement and reflexives.
The learner must decide how to analyze ‘foo’: determiner or wh-phrase?
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MGs

G G

ĝDET

MG-DET

ĝWH

MG-WH

IMGs

G G

ĝDET

IMG-DET

ĝWH

IMG-WH

Training corpus:
5 boys will shave
5 boys will shave themselves
5 who will shave
5 who will shave themselves
5 foo boys will shave

P(D|ĝDET)

P(D|ĝWH)
=

3.36× 10−18

4.48× 10−20
= 75.0 P(D|ĝDET)

P(D|ĝWH)
=

3.36× 10−18

2.45× 10−19
= 13.7
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P(D|ĝWH)
=

3.36× 10−18

2.45× 10−19
= 13.7

191 / 196



Grammatical formalisms and learning Learning with a given grammar Learning with a choice of grammars Conclusion

MGs

G G
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P(D|ĝWH)
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MGs

G G

ĝDET

MG-DET

ĝWH

MG-WH

IMGs

G G

ĝDET

IMG-DET

ĝWH

IMG-WH

Training corpus:
18 boys will shave
3 boys will shave themselves
1 who will shave
1 who will shave themselves
1 foo boys will shave

P(D|ĝDET)

P(D|ĝWH)
=

5.82× 10−14

7.27× 10−11
= 0.000801 P(D|ĝDET)

P(D|ĝWH)
=

7.64× 10−14

6.85× 10−10
= 0.000112

191 / 196



Grammatical formalisms and learning Learning with a given grammar Learning with a choice of grammars Conclusion

MGs

G G

ĝDET

MG-DET

ĝWH

MG-WH

IMGs

G G

ĝDET

IMG-DET

ĝWH

IMG-WH

Training corpus:
1 boys will shave
1 boys will shave themselves
8 who will shave
8 who will shave themselves
8 foo boys will shave

P(D|ĝDET)

P(D|ĝWH)
=

1.21× 10−17

7.70× 10−19
= 15.7 P(D|ĝDET)

P(D|ĝWH)
=

3.46× 10−17

1.19× 10−16
= 0.291
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MGs

G G

ĝDET

MG-DET

ĝWH

MG-WH

IMGs

G G

ĝDET

IMG-DET

ĝWH

IMG-WH

Training corpus:
8 boys will shave
1 boys will shave themselves

12 who will shave
1 who will shave themselves
4 foo boys will shave

P(D|ĝDET)

P(D|ĝWH)
=

2.83× 10−15

4.36× 10−20
= 64900 P(D|ĝDET)

P(D|ĝWH)
=

1.31× 10−17

1.75× 10−17
= 0.749
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MGs

G G

ĝDET

MG-DET

ĝWH

MG-WH

IMGs

G G

ĝDET
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ĝWH
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Training corpus:
10 boys will shave
2 boys will shave themselves
3 who will shave
1 who will shave themselves
5 foo boys will shave

P(D|ĝDET)

P(D|ĝWH)
=

2.44× 10−13

4.94× 10−14
= 4.94 P(D|ĝDET)

P(D|ĝWH)
=

1.46× 10−13

1.62× 10−13
= 0.901
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Details of one interesting case

MG-WH

Feature weight: ant=0.000000
Feature weight: obj=0.000000
Feature weight: subj=0.306077
Feature weight: t=-0.895880
Feature weight: v=0.000000
Feature weight: wh=0.895880
Feature weight: merge=-0.000000
Feature weight: move=-0.000000
{t29: 0.5, t13_t4: 0.5}
{t28: 0.5, t13_t5: 0.5}
{t0_t14: 0.077, t21_t7: 0.462, t22: 0.462}

t0 : (:: =t c)
t4 : (:: subj)
t5 : (:: subj -wh)
t7 : (:: wh)
t13 : (: =subj t)
t14 : (: t)
t21 : (: =wh c)
t22 : (: +wh c;: -wh)
t28 : (: +subj t;: -subj;: -wh)
t29 : (: +subj t;: -subj)

IMG-WH

Feature weight: ant=0.000000
Feature weight: obj=0.000000
Feature weight: subj=-0.860545
Feature weight: t=-0.434630
Feature weight: v=-3.324996
Feature weight: wh=2.050275
Feature weight: insert=-0.563888
Feature weight: merge=0.563888
{t00130005: 0.5, t0028: 0.5}
{t0021_t0007: 0.333, t00010016: 0.667}
{t00000014: 0.077, t0022: 0.923}
{t0013_t0004: 0.900, t00110026: 0.100}

t00000014 : (:: +t -c;: -t)
t00010016 : (:: +t +wh -c;: -t;: -wh)
t0004 : (:: -subj)
t0007 : (:: -wh)
t00110026 : (:: +v +subj -t;: -v;: -subj)
t0013 : (: +subj -t)
t00130005 : (: +subj -t;: -subj -wh)
t0021 : (: +wh -c)
t0022 : (: +wh -c;: -wh)
t0028 : (: +subj -t;: -subj;: -wh)

192 / 196



Grammatical formalisms and learning Learning with a given grammar Learning with a choice of grammars Conclusion

Outline

18 Grammatical formalisms and learning

19 Learning with a given grammar

20 Learning with a choice of grammars

21 Conclusion

193 / 196



Grammatical formalisms and learning Learning with a given grammar Learning with a choice of grammars Conclusion

What we’ve done (I hope)

If we accept — as I do — . . . that the rules of grammar enter into the
processing mechanisms, then evidence concerning production, recognition,
recall, and language use in general can be expected (in principle) to have
bearing on the investigation of rules of grammar, on what is sometimes
called “grammatical competence” or “knowledge of language”.

(Chomsky 1980: pp.200-201)

The psychological plausibility of a transformational model of the
language user would be strengthened, of course, if it could be shown that
our performance on tasks requiring an appreciation of the structure of
transformed sentences is some function of the nature, number and
complexity of the grammatical transformations involved.

(Miller and Chomsky 1963: p.481)
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What we’ve done (I hope)

There are ways to have “purely derivational” properties of formalisms make a
difference to predictions about sentence processing complexity and generalization
in learning

. . . without saying anything about real-time mental operations

. . . (let alone saying that things like merge and move happen in real time).
Instead, the derivation tree is the object to be recovered/identified.

As mentioned above, the MP as a syntactic theory appears to be a step
backwards for psycholinguistics (although perhaps not for syntacticians,
of course). One of the fundamental problems is that the model derives a
tree starting from all the lexical items and working up to the top-most
node, which obviously is difficult to reconcile with left-to-right
incremental parsing

Ferreira (2005: p.369)

What we’ve done of course leaves questions about real-time operations
unanswered.
But it’s not clear that there is a conflict that needs to be “reconciled”.
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Open questions

How realistic is the assumption that there are a finite number of derivational
states?

MGs’ SMC vs. mainstream “minimality”
Dependencies over arbitrary distances (e.g. Condition C, NPIs)
. . . ?

Local vs. global normalization
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