Sharpening the empirical claims of generative syntax through formalization

Tim Hunter

University of Minnesota, Twin Cities

NASSLLI, June 2014

Part 1: Grammars and cognitive hypotheses

What is a grammar? What can grammars do? Concrete illustration of a target: Surprisal

Parts 2-4: Assembling the pieces

Minimalist Grammars (MGs) MGs and MCFGs Probabilities on MGs

Part 5: Learning and wrap-up

Something slightly different: Learning model Recap and open questions

Sharpening the empirical claims of generative syntax through formalization

Tim Hunter - NASSLLI, June 2014

Part 4

Probabilities on MG Derivations

Outline		

13 Easy probabilities with context-free structure

Different frameworks

16 Problem #2 with the naive parametrization

17 Solution: Faithfulness to MG operations

Easy probabilities		
Outline		

13 Easy probabilities with context-free structure

4 Different frameworks

¹⁵ Problem #1 with the naive parametrization

6 Problem #2 with the naive parametrization

Solution: Faithfulness to MG operations

Easy probabilities			
Probabilistic	CFGs		

"What are the probabilities of the derivations?"

= "What are the values of λ_1 , λ_2 , etc.?"

١.	
	$NP \rightarrow lohn$
12	
13	VP vran
~4	
~5	$VF \rightarrow V NF$
×6	$VP \rightarrow VS$
λ_7	$V \rightarrow believed$
λ_8	$V \rightarrow knew$

Easy probabilities			
Probabilistic	CFGs		

"What are the probabilities of the derivations?"

"What are the values of λ_1 , λ_2 , etc.?"

Easy probabilities			
MCFG for an	entire Minimalist	t Grammar	

Lexical items:

 $\begin{array}{ll} \epsilon:: \langle = \mathsf{t} + \mathsf{wh} \, \mathsf{c} \rangle_1 & \text{praise} :: \langle = \mathsf{d} \, \mathsf{v} \rangle_1 \\ \epsilon:: \langle = \mathsf{t} \, \mathsf{c} \rangle_1 & \text{marie} :: \langle \mathsf{d} \rangle_1 \\ \text{will} :: \langle = \mathsf{v} \, = \mathsf{d} \, \mathsf{t} \rangle_1 & \text{pierre} :: \langle \mathsf{d} \rangle_1 \\ \text{often} :: \langle = \mathsf{v} \, \mathsf{v} \rangle_1 & \text{who} :: \langle \mathsf{d} - \mathsf{wh} \rangle_1 \end{array}$

Production rules:

$$\begin{array}{rcl} \langle st, u \rangle :: \langle +\mathsf{wh} \, \mathsf{c}, -\mathsf{wh} \rangle_0 & \to & s :: \langle =\mathsf{t} \, +\mathsf{wh} \, \mathsf{c} \rangle_1 & \langle t, u \rangle :: \langle \mathsf{t}, -\mathsf{wh} \rangle_0 \\ st :: \langle =\mathsf{d} \, \mathsf{t} \rangle_0 & \to & s :: \langle =\mathsf{v} \, =\mathsf{d} \, \mathsf{t} \rangle_1 & t :: \langle \mathsf{v} \rangle_0 \\ \langle st, u \rangle :: \langle =\mathsf{d} \, \mathsf{t}, -\mathsf{wh} \rangle_0 & \to & s :: \langle =\mathsf{v} \, =\mathsf{d} \, \mathsf{t} \rangle_1 & \langle t, u \rangle :: \langle \mathsf{v}, -\mathsf{wh} \rangle_0 \\ ts :: \langle \mathsf{c} \rangle_0 & \to & \langle s, t \rangle :: \langle +\mathsf{wh} \, \mathsf{c}, -\mathsf{wh} \rangle_0 \\ st :: \langle \mathsf{c} \rangle_0 & \to & s :: \langle =\mathsf{t} \, \mathsf{c} \rangle_1 & t :: \langle \mathsf{t} \rangle_0 \\ ts :: \langle \mathsf{t} \rangle_0 & \to & s :: \langle =\mathsf{d} \, \mathsf{t} \rangle_0 & t :: \langle \mathsf{d} \rangle_1 \\ \langle ts, u \rangle :: \langle \mathsf{t}, -\mathsf{wh} \rangle_0 & \to & \langle s, u \rangle :: \langle =\mathsf{d} \, \mathsf{t}, -\mathsf{wh} \rangle_0 & t :: \langle \mathsf{d} \rangle_1 \\ st :: \langle \mathsf{v} \rangle_0 & \to & s :: \langle =\mathsf{d} \, \mathsf{v} \rangle_1 & t :: \langle \mathsf{d} \rangle_1 \\ st :: \langle \mathsf{v} \rangle_0 & \to & s :: \langle =\mathsf{v} \, \mathsf{v} \rangle_1 & t :: \langle \mathsf{d} \rangle_1 \\ \langle st, u \rangle :: \langle \mathsf{v}, -\mathsf{wh} \rangle_0 & \to & s :: \langle =\mathsf{d} \, \mathsf{v} \rangle_1 & t :: \langle \mathsf{d} -\mathsf{wh} \rangle_1 \\ \langle st, u \rangle :: \langle \mathsf{v}, -\mathsf{wh} \rangle_0 & \to & s :: \langle =\mathsf{v} \, \mathsf{v} \rangle_1 & \langle t, u \rangle :: \langle \mathsf{v}, -\mathsf{wh} \rangle_0 \end{array}$$

Easy probabilities			
Probabilities	on MCFGs		

The context-free "backbone" for MG derivations identifies a parametrization for probability distributions over them.

$$\lambda_2 = \frac{\operatorname{\mathsf{count}} \bigl(\langle \mathsf{c} \rangle_0 \to \langle \texttt{=t} \ \mathsf{c} \rangle_1 \langle \mathsf{t} \rangle_0 \bigr)}{\operatorname{\mathsf{count}} \bigl(\langle \mathsf{c} \rangle_0 \bigr)}$$

Plus: It turns out that the intersect-with-an-FSA trick we used for CFGs also works for MCFGs!

Easy probabilities

Different frameworks

Problem #1

Problem #2

Solution: Faithfulness to MG operations

Grammar intersection example (simple)

NB: Total weight in this grammar is not one! (What is it? Start symbol is $S_{0,2}$.) Each derivation has the weight "it" had in the original grammar.

Unlike in a CFG, we can ensure that the two "halves" are extended in the same ways without concatenating them together.

Fasy	pro	bab	ilitie	s
		_		

Problem #

Intersection with an MCFG

$\begin{array}{rcccc} S_{0,2} & \to & P_{0,1;1,2} \\ P_{0,1;1,2} & \to & P_{\varepsilon;\varepsilon} \; E_{0,1;1,2} \\ E_{0,1;1,2} & \to & A_{0,1} \; A_{1,2} \end{array}$	$\begin{array}{rcccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} \langle b,b\rangle :: E_{2,2;2,2} \\ \langle a,a\rangle :: E_{2,2;2,2} \\ \langle \epsilon,\epsilon\rangle :: P_{e;e} \\ \langle \epsilon,\epsilon\rangle :: P_{e;2,2} \\ a :: A_{2,2} \\ b :: B_{2,2} \\ a :: A_{0,1} \\ a :: A_{1,2} \end{array} $
--	---	---

Intersection grammars

surprisal at 'John' = $-\log P(W_3 = \text{John} | W_1 = \text{Mary}, W_2 = \text{believed})$ = $-\log \frac{\text{total weight in } G_3}{\text{total weight in } G_2}$ = $-\log \frac{0.0672}{0.224}$ = 1.74

Easy probabilities			
Surprisal and	entropy reduction	on	

surprisal at 'John' =
$$-\log P(W_3 = \text{John} | W_1 = \text{Mary}, W_2 = \text{believed})$$

= $-\log \frac{\text{total weight in } G_3}{\text{total weight in } G_2}$

entropy reduction at 'John' = (entropy of G_2) – (entropy of G_3)

Easy probabilities

Computing sum of weights in a grammar ("partition function")

		$Z(A) = \sum_{A \to \alpha} \left(p(A \to \alpha) \cdot Z(\alpha) \right)$ $Z(\epsilon) = 1$ $Z(a\beta) = Z(\beta)$ $Z(B\beta) = Z(B) \cdot Z(\beta) \text{where } \beta \neq \epsilon$	(Nederhof and Satta 2008
1.0 0.3 0.7 0.2 0.5 0.4 0.6	$\begin{array}{l} S \rightarrow NP \; VP \\ NP \rightarrow John \\ NP \rightarrow Mary \\ VP \rightarrow ran \\ VP \rightarrow V \; NP \\ V \rightarrow believed \\ V \rightarrow knew \end{array}$	Z(V) = 0.4 + 0.6 = 1.0 Z(NP) = 0.3 + 0.7 = 1.0 $Z(VP) = 0.2 + (0.5 \cdot Z(V) \cdot Z(NP))$ $= 0.2 + (0.5 \cdot 1.0 \cdot 1.0) = 0.7$ $Z(S) = 1.0 \cdot Z(NP) \cdot Z(VP)$ = 0.7	
1.0 0.3 0.7 0.2 0.5 0.3 0.4 0.6	$\begin{array}{l} S \rightarrow NP \ VP \\ NP \rightarrow John \\ NP \rightarrow Mary \\ VP \rightarrow ran \\ VP \rightarrow V \ NP \\ VP \rightarrow V \ S \\ V \rightarrow believed \\ V \rightarrow knew \end{array}$	Z(V) = 0.4 + 0.6 = 1.0 Z(NP) = 0.3 + 0.7 = 1.0 $Z(VP) = 0.2 + (0.5 \cdot Z(V) \cdot Z(NP)) + (0.3$ $Z(S) = 1.0 \cdot Z(NP) \cdot Z(VP)$	$\cdot Z(V) \cdot Z(S))$

Computing entropy of a grammar

 $1.0 \quad S \rightarrow NP \ VP$

- $0.3 \quad \mathsf{NP} \to \mathsf{John}$
- $0.7 \quad \mathsf{NP} \to \mathsf{Mary}$
- 0.2 VP \rightarrow ran
- $0.5 \text{ VP} \rightarrow \text{V NP}$
- $0.3~VP \rightarrow V~S$
- $0.4~~V \rightarrow \text{believed}$
- $0.6~V \to knew$

$$h(S) = 0$$

 $h(NP) = entropy of (0.3, 0.7)$
 $h(VP) = entropy of (0.2, 0.5, 0.3)$
 $h(V) = entropy of (0.4, 0.6)$

$$h(V) = entropy of (0.4, 0.6)$$

$$H(S) = h(S) + 1.0(H(NP) + H(VP))$$

$$H(NP) = h(NP)$$

$$H(VP) = h(VP) + 0.2(0) + 0.5(H(V) + H(NP)) + 0.3(H(V) + H(S))$$

$$H(V) = h(V)$$

(Hale 2006)

Easy probabilities			
Surprisal and	entropy reduction	on	

surprisal at 'John' =
$$-\log P(W_3 = \text{John} \mid W_1 = \text{Mary}, W_2 = \text{believed})$$

= $-\log \frac{\text{total weight in } G_3}{\text{total weight in } G_2}$

entropy reduction at 'John' = (entropy of G_2) – (entropy of G_3)

Putting it all together (Hale 2006)

We can now put entropy reduction/surprisal together with a minimalist grammar to produce predictions about sentence comprehension difficulty!

 $\mathsf{complexity}\ \mathsf{metric}\ +\ \mathsf{grammar}\ \longrightarrow\ \mathsf{prediction}$

- Write an MG that generates sentence types of interest
- Convert MG to an MCFG
- Add probabilities to MCFG based on corpus frequencies (or whatever else)
- Compute intersection grammars for each point in a sentence
- Calculate reduction in entropy across the course of the sentence (i.e. workload)

Easy probabilities		

Demo

Hale (2006)

Fig. 11. Kaynian promotion analysis.

Problem #2

Hale (2006)

they have -ed forget -en that the boy who tell -ed the story be -s so young the fact that the girl who pay -ed for the ticket be -s very poor doesnt matter I know that the girl who get -ed the right answer be -s clever he remember -ed that the man who sell -ed the house leave -ed the town

they have -ed forget -en that the letter which Dick write -ed yesterday be -s long the fact that the cat which David show -ed to the man like -s eggs be -s strange I know that the dog which Penny buy -ed today be -s very gentle he remember -ed that the sweet which David give -ed Sally be -ed a treat

they have -ed forget -en that the man who Ann give -ed the present to be -ed old the fact that the boy who Paul sell -ed the book to hate -s reading be -s strange I know that the man who Stephen explain -ed the accident to be -s kind he remember -ed that the dog which Mary teach -ed the trick to be -s clever

they have -ed forget -en that the box which Pat bring -ed the apple in be -ed lost the fact that the girl who Sue write -ed the story with be -s proud doesnt matter I know that the ship which my uncle take -ed Joe on be -ed interesting he remember -ed that the food which Chris pay -ed the bill for be -ed cheap

they have -ed forget -en that the girl whose friend buy -ed the cake be -ed wait -ing the fact that the boy whose brother tell -s lies be -s always honest surprise -ed us I know that the boy whose father sell -ed the dog be -ed very sad he remember -ed that the girl whose mother send -ed the clothe come -ed too late

they have -ed forget -en that the man whose house Patrick buy -ed be -ed so ill the fact that the sailor whose ship Jim take -ed have -ed one leg be -s important I know that the woman whose car Jenny sell -ed be -ed very angry he remember -ed that the girl whose picture Clare show -ed us be -ed pretty $^{144/196}$

Easy probabilities		
Hale (2006)		

count	grammatical relation	definition
1430	subject	co-indexed trace is the first daughter of S
929	direct object	co-indexed trace is immediately following sister of a V-node
167	indirect object	co-indexed trace is part of a PP not annotated as benefactive, loca-
		tive, manner, purpose, temporal or directional
41	oblique	co-indexed trace is part of a benefactive, locative, manner, purpose,
		temporal or directional PP
34	genitive subject	WH word is whose and co-indexed trace is first daughter of S
4	genitive direct object	WH word is whose and co-indexed trace is immediately following
		sister of a V-node

Fig. 13. Counts from Brown portion of Penn Treebank III.

Easy probabilities		

Hale (2006)

(a) Per-sentence entropy reductions on the promotion grammar

Grammatical Relation:	SU	DO	IO	OBL	GenS	GenO
Repetition Accuracy:	406	364	342	279	167	171
errors (= $R.A.max - R.A.$)	234	276	298	361	471	469

Fig. 8. Results from Keenan and Hawkins (1987).

Hale (2006)	

Hale actually wrote two different MGs:

- classical adjunction analysis of relative clauses
- Kaynian/promotion analysis

Easy probabilities		
Hale (2006)		

Hale actually wrote two different MGs:

- classical adjunction analysis of relative clauses
- Kaynian/promotion analysis

The branching structure of the two MCFGs was different enough to produce distinct Entropy Reduction predictions. (Same corpus counts!)

The Kaynian/promotion analysis produced a better fit for the Accessibility Hierarchy facts.

(i.e. holding the complexity metric fixed to argue for a grammar)

But there are some ways in which this method is insensitive to fine details of the MG formalism.

	Different frameworks		
Outline			

Different frameworks

¹⁵ Problem #1 with the naive parametrization

6 Problem #2 with the naive parametrization

Solution: Faithfulness to MG operations

Subtlely different minimalist frameworks

Minimalist grammars with many choices of different bells and whistles can all be expressed with context-free derivational structure.

- Must keep an eye on finiteness of number of types (SMC or equivalent)!
- See Stabler (2011)

Some points of variation:

- adjunction
- head movement
- o phases
- move as re-merge

• . . .

	Different frameworks		
How to deal	with adjuncts?		

A normal application of MERGE?

Or a new kind of feature and distinct operation ADJOIN?

	Different frameworks		
How to impl	omout "bood mo		

How to implement "head movement"?

Modify ${\rm MERGE}$ to allow some additional string-shuffling in head-complement relationships?

	Different frameworks		
How to imply	oncent "beed not		

How to implement "head movement"?

Modify ${\rm MERGE}$ to allow some additional string-shuffling in head-complement relationships?

Or some combination of normal phrasal movements? (Koopman and Szabolcsi 2000)

Different frameworks		
omout "bood me		

How to implement "head movement"?

Modify ${\rm MERGE}$ to allow some additional string-shuffling in head-complement relationships?

Or some combination of normal phrasal movements? (Koopman and Szabolcsi 2000)

	Different frameworks		
Successive cy	clic movement?		

Problem #

Successive cyclic movement?

Different frameworks		

Unifying feature-checking (one way)

Unifying feature-checking (one way)

(Stabler 2006, Hunter 2011) 151 / 196

	Different frameworks				
Three schem	as for MERGE rules	:			
$\langle st, t_1, \ldots$	$\langle , t_k \rangle :: \langle \gamma, \alpha_1, \ldots, \alpha_k \rangle$	$\langle \alpha_k \rangle_0 \rightarrow$			
		s :: $\langle \texttt{=f}\gamma angle_1$	$\langle t, t_1, \ldots, t_k \rangle$	$(\mathbf{f}, \alpha_1, \ldots, \alpha_k)_n$	
$\langle ts, s_1, \ldots$	$\langle , s_j, t_1, \ldots, t_k \rangle :: \langle \gamma \rangle$	$\alpha_j, \alpha_1, \ldots, \alpha_j, \beta_1, \beta_1, \beta_1$	$\ldots, \beta_k \rangle_0 \rightarrow$		
	$\langle s, s_1, \ldots, s_j \rangle :: \langle = 1$	$\langle \gamma, \alpha_1, \ldots, \alpha_j \rangle_0$	$\langle t, t_1, \ldots, t_k$	$\mathcal{Y} :: \langle 1, \beta_1, \dots, \beta_k \rangle_n$	
$\langle s, s_1, \ldots$	$\langle s_j, t, t_1, \ldots, t_k \rangle :: \langle t_j \rangle$	$\gamma, \alpha_1, \ldots, \alpha_j, \delta,$	$\beta_1,\ldots,\beta_k\rangle_0$	\rightarrow	
	$\langle s, s_1, \dots, s_j \rangle :: \langle = \mathbf{f} \gamma$	$, \alpha_1, \ldots, \alpha_j \rangle_n$	$\langle t, t_1, \ldots, t_k \rangle$	$\exists \langle \mathbf{f}\delta, \beta_1, \ldots, \beta_k \rangle_{n'}$	

Two schemas for MERGE rules:

$$\begin{array}{c} \langle s_i s, s_1, \dots, s_{i-1}, s_{i+1}, \dots, s_k \rangle :: \langle \gamma, \alpha_1, \dots, \alpha_{i-1}, \alpha_{i+1}, \dots, \alpha_k \rangle_0 \\ \langle s, s_1, \dots, s_i, \dots, s_k \rangle :: \langle + \mathbf{f} \gamma, \alpha_1, \dots, \alpha_{i-1}, -\mathbf{f}, \alpha_{i+1}, \dots, \alpha_k \rangle_0 \end{array}$$

$$\begin{array}{ccc} \langle \boldsymbol{s}, \boldsymbol{s}_1, \dots, \boldsymbol{s}_i, \dots, \boldsymbol{s}_k \rangle & :: \langle \boldsymbol{\gamma}, \alpha_1, \dots, \alpha_{i-1}, \boldsymbol{\delta}, \alpha_{i+1}, \dots, \alpha_k \rangle_0 & \rightarrow \\ & \langle \boldsymbol{s}, \boldsymbol{s}_1, \dots, \boldsymbol{s}_i, \dots, \boldsymbol{s}_k \rangle & :: \langle \texttt{+f} \boldsymbol{\gamma}, \alpha_1, \dots, \alpha_{i-1}, \texttt{-f} \boldsymbol{\delta}, \alpha_{i+1}, \dots, \alpha_k \rangle_0 \end{array}$$
One schema for $\ensuremath{\operatorname{INSERT}}$ rules:

$$\begin{array}{l} \langle \boldsymbol{s}, \boldsymbol{s}_1, \dots, \boldsymbol{s}_j, \boldsymbol{t}, \boldsymbol{t}_1, \dots, \boldsymbol{t}_k \rangle :: \langle \mathtt{+} \mathbf{f} \gamma, \alpha_1, \dots, \alpha_j, \mathtt{-} \mathbf{f} \gamma', \beta_1, \dots, \beta_k \rangle_n & \rightarrow \\ \boldsymbol{s}, \boldsymbol{s}_1, \dots, \boldsymbol{s}_j :: \langle \mathtt{+} \mathbf{f} \gamma, \alpha_1, \dots, \alpha_j \rangle_n & \langle \boldsymbol{t}, \boldsymbol{t}_1, \dots, \boldsymbol{t}_k \rangle :: \langle \mathtt{-} \mathbf{f} \gamma', \beta_1, \dots, \beta_k \rangle_{n'} \end{array}$$

Three schemas for MRG rules:

$$\langle ss_i, s_1, \dots, s_{i-1}, s_{i+1}, \dots, s_k \rangle :: \langle \gamma, \alpha_1, \dots, \alpha_{i-1}, \alpha_{i+1}, \dots, \alpha_k \rangle_0 \rightarrow \langle s, s_1, \dots, s_i, \dots, s_k \rangle :: \langle +f\gamma, \alpha_1, \dots, \alpha_{i-1}, -f, \alpha_{i+1}, \dots, \alpha_k \rangle_1$$

$$\begin{array}{c} \langle \mathbf{s}_i \mathbf{s}, \mathbf{s}_1, \dots, \mathbf{s}_{i-1}, \mathbf{s}_{i+1}, \dots, \mathbf{s}_k \rangle :: \langle \gamma, \alpha_1, \dots, \alpha_{i-1}, \alpha_{i+1}, \dots, \alpha_k \rangle_0 & \rightarrow \\ & \langle \mathbf{s}, \mathbf{s}_1, \dots, \mathbf{s}_i, \dots, \mathbf{s}_k \rangle :: \langle \mathbf{+f}\gamma, \alpha_1, \dots, \alpha_{i-1}, \mathbf{-f}, \alpha_{i+1}, \dots, \alpha_k \rangle_0 \end{array}$$

$$\begin{aligned} \langle \boldsymbol{s}, \boldsymbol{s}_1, \dots, \boldsymbol{s}_i, \dots, \boldsymbol{s}_k \rangle &:: \langle \boldsymbol{\gamma}, \alpha_1, \dots, \alpha_{i-1}, \boldsymbol{\delta}, \alpha_{i+1}, \dots, \alpha_k \rangle_0 & \rightarrow \\ & \langle \boldsymbol{s}, \boldsymbol{s}_1, \dots, \boldsymbol{s}_i, \dots, \boldsymbol{s}_k \rangle &:: \langle \texttt{+f} \boldsymbol{\gamma}, \alpha_1, \dots, \alpha_{i-1}, \texttt{-f} \boldsymbol{\delta}, \alpha_{i+1}, \dots, \alpha_k \rangle_0 \end{aligned}$$

Subtlely different minimalist frameworks

Minimalist grammars with many choices of different bells and whistles can all be expressed with context-free derivational structure.

- Must keep an eye on finiteness of number of types (SMC or equivalent)!
- See Stabler (2011)

Some points of variation:

- adjunction
- head movement
- phases
- move as re-merge
- . . .

Subtlely different minimalist frameworks

Minimalist grammars with many choices of different bells and whistles can all be expressed with context-free derivational structure.

- Must keep an eye on finiteness of number of types (SMC or equivalent)!
- See Stabler (2011)

Some points of variation:

- adjunction
- head movement
- phases
- move as re-merge
- . . .

Each variant of the formalism expresses a different hypothesis about the set of primitive grammatical operations. (We are looking for ways to tell these apart!)

- The "shapes" of the derivation trees are generally very similar from one variant to the next.
- But variants will make different classifications of the derivational steps involved, according to which operation is being applied.

	Problem #1	
Outline		

Basy probabilities with context-free structure

4 Different frameworks

6 Problem #2 with the naive parametrization

	Problem #1	

Probabilities on MCFGs

λ_1	$ts :: \langle c \rangle_0$	\rightarrow	$\langle s,t angle$:: \langle +wh	$ c, -wh\rangle_0$
λ_2	st :: $\langle c angle_0$	\rightarrow	$s::\langle \texttt{=t} \ \texttt{c} angle_1$	$t::\langle t \rangle_0$
λ_3	st :: $\langle v \rangle_0$	\rightarrow	s :: $\langle \texttt{=d} v \rangle_1$	$t::\langle \mathtt{d} angle _{1}$
λ_4	st :: $\langle v \rangle_0$	\rightarrow	s :: $\langle = v v \rangle_1$	$t::\langle v \rangle_0$
λ_5	$\langle s,t angle$:: $\langle v,-wh angle_0$	\rightarrow	$s::\langle \texttt{=d} v angle_1$	$t::\langle \texttt{d}-\texttt{wh} angle_1$
λ_6	$\langle st, u \rangle :: \langle v, -wh \rangle_0$	\rightarrow	$s::\langle = v v \rangle_1$	$\langle t, u \rangle :: \langle v, -wh \rangle_0$

Training question: What values of $\lambda_1,\,\lambda_2,$ etc. make the training corpus most likely?

Easy probabilities				
	H D G V			
		pio		

Problem #1 with the naive parametrization

Grammar	Training data
pierre :: dwho :: d -whmarie :: dwill :: =v =d tpraise :: =d v ϵ :: =t coften :: =v v ϵ :: =t +wh c	 90 pierre will praise marie 5 pierre will often praise marie 1 who pierre will praise 1 who pierre will often praise

H D G V	hal	

Problem #

Solution: Faithfulness to MG operations

Problem #1 with the naive parametrization

Grammar	Training data	
pierre :: dwho :: d -whmarie :: dwill :: =v =d tpraise :: =d v ϵ :: =t coften :: =v v ϵ :: =t +wh c	 90 pierre will praise marie 5 pierre will often praise marie 1 who pierre will praise 1 who pierre will often praise 	
$\begin{array}{ccc} st ::: \langle \mathbf{v} \rangle_0 & \to & s :: \langle = \mathbf{d} \; \mathbf{v} \rangle_1 \\ st ::: \langle \mathbf{v} \rangle_0 & \to & s :: \langle = \mathbf{v} \; \mathbf{v} \rangle_1 \\ \left\langle s, \mathbf{t} \rangle :: \langle \mathbf{v} \; s \; $	$t ::: \langle \mathbf{d} \rangle_1$ 0.95 $t ::: \langle \mathbf{v} \rangle_0$ 0.05 $t ::: \langle \mathbf{d} - \mathbf{v} \mathbf{b} \rangle_0$ 0.67	

$$\langle \mathbf{s}, t \rangle \dots \langle \mathbf{v}, -\mathbf{wh} \rangle_0 \rightarrow \mathbf{s} \dots \langle -\mathbf{u} \vee \rangle_1 \quad t \dots \langle \mathbf{u} - \mathbf{wh} \rangle_1 \quad 0.07 \\ \langle \mathbf{s}t, u \rangle \dots \langle \mathbf{v}, -\mathbf{wh} \rangle_0 \rightarrow \mathbf{s} \dots \langle \mathbf{s} \dots \langle \mathbf{v}, \mathbf{v} \rangle_1 \quad \langle t, u \rangle \dots \langle \mathbf{v}, -\mathbf{wh} \rangle_0 \quad 0.33$$

	Problem #1	

Generalizations missed by the naive parametrization

$$st :: \langle v \rangle_0 \rightarrow s :: \langle =v v \rangle_1 \quad t :: \langle v \rangle_0$$

	Problem #1	

Generalizations missed by the naive parametrization

$$st :: \langle v \rangle_0 \rightarrow s :: \langle =v v \rangle_1 \quad t :: \langle v \rangle_0$$

$$(\mathfrak{st}, u) :: \langle v, -wh \rangle_0 \longrightarrow \mathfrak{s} :: \langle =v v \rangle_1 \quad \langle t, u \rangle :: \langle v, -wh \rangle_0$$

H D G V	hal	

Problem #

Solution: Faithfulness to MG operations

Problem #1 with the naive parametrization

Grammar	Training data	
pierre :: dwho :: d -whmarie :: dwill :: =v =d tpraise :: =d v ϵ :: =t coften :: =v v ϵ :: =t +wh c	 90 pierre will praise marie 5 pierre will often praise marie 1 who pierre will praise 1 who pierre will often praise 	
$\begin{array}{ccc} st ::: \langle \mathbf{v} \rangle_0 & \to & s :: \langle = \mathbf{d} \; \mathbf{v} \rangle_1 \\ st ::: \langle \mathbf{v} \rangle_0 & \to & s :: \langle = \mathbf{v} \; \mathbf{v} \rangle_1 \\ \left\langle s, \mathbf{t} \rangle :: \langle \mathbf{v} \; s \; $	$t ::: \langle \mathbf{d} \rangle_1$ 0.95 $t ::: \langle \mathbf{v} \rangle_0$ 0.05 $t ::: \langle \mathbf{d} - \mathbf{v} \mathbf{b} \rangle_0$ 0.67	

$$\langle \mathbf{s}, t \rangle \dots \langle \mathbf{v}, -\mathbf{wh} \rangle_0 \rightarrow \mathbf{s} \dots \langle -\mathbf{u} \vee \rangle_1 \quad t \dots \langle \mathbf{u} - \mathbf{wh} \rangle_1 \quad 0.07 \\ \langle \mathbf{s}t, u \rangle \dots \langle \mathbf{v}, -\mathbf{wh} \rangle_0 \rightarrow \mathbf{s} \dots \langle \mathbf{s} \dots \langle \mathbf{v}, \mathbf{v} \rangle_1 \quad \langle t, u \rangle \dots \langle \mathbf{v}, -\mathbf{wh} \rangle_0 \quad 0.33$$

H D G V	hal	

- - -

Problem #1 with the naive parametrization

Grammar		Traini	ing data
pierre :: d	who::d-wh	90	pierre will praise marie
marie :: d	will::=v=dt	5	pierre will often praise marie
praise :: =d v	€::=tc	1	who pierre will praise
often :: =v v	€::=t+wh c	1	who pierre will often praise

$$\frac{\operatorname{count}\left(\langle v \rangle_{0} \to \langle = d v \rangle_{1} \langle d \rangle_{1}\right)}{\operatorname{count}\left(\langle v \rangle_{0}\right)} = \frac{95}{100}$$
$$\frac{\operatorname{count}\left(\langle v, \neg wh \rangle_{0} \to \langle = d v \rangle_{1} \langle d \neg wh \rangle_{1}\right)}{\operatorname{count}\left(\langle v, \neg wh \rangle_{0}\right)} = \frac{2}{3}$$

This training setup doesn't know which minimalist-grammar operations are being implemented by the various MCFG rules.

Naive parametrization

		Problem #2	
Outline			

16 Problem #2 with the naive parametrization

Problem #2

A (slightly) more complicated grammar

boys will shave boys will shave themselves who will shave who will shave themselves foo boys will shave foo boys will shave themselves

Some details:

- Subject is base-generated in SpecTP; no movement for Case
- Transitive and intransitive versions of shave
- foo is a determiner that optionally combines with boys to make a subject
 - Dummy feature x to fill complement of boys so that foo goes on the left
- themselves can appear in object position, via a movement theory of reflexives
 - A subj can be turned into an ant -subj
 - themselves combines with an ant to make an obj
 - will can attract its subject by move as well as merge

			Problem #2	Solution: Faithfulness to MG operations
Choice point	s in the MG-der	ived MCFC	3	
Question or	not?			
$\begin{array}{ccc} \langle c angle_0 & ightarrow & & ight$	$\langle = t c \rangle_0 \langle t \rangle_0$ $\langle + wh c, -wh \rangle_0$			
Antecedent	lexical or complex?	?		
<pre>(ant -subj) (ant -subj)</pre>	$egin{array}{rcl} & ightarrow & \langle = { t subj} ext{ an} \ & ightarrow & \langle = { t subj} ext{ an} \ & ightarrow & \langle = { t subj} ext{ an} \end{array}$	t -subj $ angle_1$ t -subj $ angle_1$	$\langle \texttt{subj} angle_0 \ \langle \texttt{subj} angle_1$	

Non-wh subject merged and complex, merged and lexical, or moved?

$\langle t \rangle_0$	\rightarrow	$\langle \texttt{=subj t} \rangle_0$	$\langle \texttt{subj} \rangle_0$
$\langle t \rangle_0$	\rightarrow	$\langle \texttt{=subj t} \rangle_0$	$\langle \texttt{subj} angle_1$
$\langle {\tt t} \rangle_0$	\rightarrow	$\langle \texttt{+subj t}, \texttt{-s} \rangle$	ubj \rangle_0

Wh-phrase same as moving subject or separated because of doubling?

$\langle \texttt{t}, \texttt{-wh} angle_0$	\rightarrow	$\langle \texttt{=subj t} \rangle_0$	$\langle \texttt{subj} - \texttt{wh} angle_1$
$\langle \texttt{t}, \texttt{-wh} \rangle_0$	\rightarrow	$\langle \texttt{+subj t}, \texttt{-s} \rangle$	$\mathtt{ubj}, \mathtt{-wh}_0$

Easv	bro	ווס	ITI	

Choice points in the IMG-derived MCFG

Question or not?

$\langle -c \rangle_0$	\rightarrow	$\langle \texttt{+t} \ \texttt{-c}, \texttt{-t} angle_1$
$\langle -c \rangle_0$	\rightarrow	$\langle \texttt{+wh} - \texttt{c}, \texttt{-wh} \rangle_0$

Antecedent lexical or complex?

$\langle \texttt{+subj} - \texttt{ant} - \texttt{subj}, -\texttt{subj} \rangle_0$	\rightarrow	$\langle \texttt{+subj} - \texttt{ant} - \texttt{subj} angle_0$	$\langle \texttt{-subj} \rangle_0$
$\langle\texttt{+subj} \texttt{-ant} \texttt{-subj}, \texttt{-subj}\rangle_0$	\rightarrow	$\langle \texttt{+subj} - \texttt{ant} - \texttt{subj} angle_0$	$\langle \texttt{-subj} \rangle_1$

Non-wh subject merged and complex, merged and lexical, or moved?

$\langle \texttt{+subj} \ \texttt{-t}, \texttt{-subj} \rangle_0$	\rightarrow	$\langle \texttt{+subj} \ \texttt{-t} angle_0$	$\langle \texttt{-subj} \rangle_0$
$\langle\texttt{+subj}~\texttt{-t},\texttt{-subj}\rangle_0$	\rightarrow	$\langle \texttt{+subj} \ \texttt{-t} angle_0$	$\langle \texttt{-subj} angle_1$
$\langle\texttt{+subj}~\texttt{-t},\texttt{-subj}\rangle_0$	\rightarrow	$\langle +v + subj -t, \rangle$	$ v, -v, -subj\rangle_1$

Wh-phrase same as moving subject or separated because of doubling?

$\langle\texttt{-t},\texttt{-wh}\rangle_0$	\rightarrow	$\langle \texttt{+subj -t}, \texttt{-subj -wh} \rangle_0$
$\langle \texttt{-t}, \texttt{-wh} \rangle_0$	\rightarrow	$\langle \texttt{+subj} \ \texttt{-t}, \texttt{-subj}, \texttt{-wh} \rangle_0$

Problem #2

Solution: Faithfulness to MG operations

Problem #2 with the naive parametrization

ľ	Langu	age	of	both	grammars
					• •

boys will shave boys will shave themselves who will shave who will shave themselves foo boys will shave foo boys will shave themselves

Training data

- 10 boys will shave
- 2 boys will shave themselves
- 3 who will shave
- 1 who will shave themselves
- 5 foo boys will shave

Problem #2 with the naive parametrization

Language of both grammars

boys will shave boys will shave themselves who will shave who will shave themselves foo boys will shave foo boys will shave themselves

Training data

- 10 boys will shave
- 2 boys will shave themselves
- 3 who will shave
- 1 who will shave themselves
- 5 foo boys will shave

With merge and move distinct operations:

0.47619	boys will shave
0.238095	foo boys will shave
0.142857	who will shave
0.0952381	boys will shave themselves
0.047619	who will shave themselves

With merge and move as unified operations:

	0.47619	boys will shave
	0.238095	foo boys will shave
	0.142857	who will shave
	0.0952381	boys will shave themselves
	0.047619	who will shave themselves
_		

Problem #2 with the naive parametrization

Language of both	grammars
------------------	----------

boys will shave boys will shave themselves who will shave who will shave themselves foo boys will shave foo boys will shave themselves

Training data

- 10 boys will shave
- 2 boys will shave themselves
- 3 who will shave
- 1 who will shave themselves
- 5 foo boys will shave

With merge and move distinct operations:

boys will shave
foo boys will shave
who will shave
boys will shave themselves
who will shave themselves

With merge and move as unified operations:

0.47619	boys will shave
0.238095	foo boys will shave
0.142857	who will shave
0.0952381	boys will shave themselves
0.047619	who will shave themselves

This treatment of probabilities doesn't know which minimalist-grammar operations are being implemented by the various MCFG rules.

So the probabilities are unaffected by changes in set of primitive operations.

Naive parametrization

		Solution: Faithfulness to MG operations
Outline		

17 Solution: Faithfulness to MG operations

Solution: Have a rule's probability be a function of (only) "what it does"

- merge or move
- what feature is being checked (either movement or selection)

Solution: Have a rule's probability be a function of (only) "what it does"

- merge or move
- what feature is being checked (either movement or selection)

MCFG Rule	$\phi_{ ext{MERGE}}$	$\phi_{\mathtt{d}}$	$\phi_{\mathtt{v}}$	ϕ_{t}	$\phi_{ ext{move}}$	$\phi_{\mathtt{wh}}$
$st :: \langle c \rangle_0 \rightarrow s :: \langle =t c \rangle_1 t :: \langle t \rangle_0$	1	0	0	1	0	0
$ts :: \langle c \rangle_0 \rightarrow \langle s, t \rangle :: \langle +wh c, -wh \rangle_0$	0	0	0	0	1	1
$st :: \langle v \rangle_0 \rightarrow s :: \langle = d v \rangle_1 t :: \langle d \rangle_1$	1	1	0	0	0	0
$st :: \langle v \rangle_0 \rightarrow s :: \langle =v v \rangle_1 t :: \langle v \rangle_0$	1	0	1	0	0	0
$\langle s,t \rangle :: \langle v, -wh \rangle_0 \rightarrow s :: \langle =d v \rangle_1 t :: \langle d -wh \rangle_1$	1	1	0	0	0	0
$\langle st, u \rangle :: \langle v, -wh \rangle_0 \rightarrow s :: \langle =v v \rangle_1 \langle t, u \rangle :: \langle v, -wh \rangle_0$	1	0	1	0	0	0

$$\begin{split} s(r) &= \exp(\lambda \cdot \phi(r)) \\ &= \exp(\lambda_{\text{MERGE}} \phi_{\text{MERGE}}(r) + \lambda_{\text{d}} \phi_{\text{d}}(r) + \lambda_{\text{v}} \phi_{\text{v}}(r) + \dots) \end{split}$$

Solution: Have a rule's probability be a function of (only) "what it does"

- merge or move
- what feature is being checked (either movement or selection)

MCFG Rule	$\phi_{ ext{MERGE}}$	$\phi_{\mathtt{d}}$	$\phi_{\mathtt{v}}$	ϕ_{t}	$\phi_{ ext{move}}$	$\phi_{\tt wh}$
$st :: \langle c \rangle_0 \rightarrow s :: \langle =t c \rangle_1 t :: \langle t \rangle_0$	1	0	0	1	0	0
$ts :: \langle c \rangle_0 \rightarrow \langle s, t \rangle :: \langle +wh c, -wh \rangle_0$	0	0	0	0	1	1
$st :: \langle v \rangle_0 \rightarrow s :: \langle = d v \rangle_1 t :: \langle d \rangle_1$	1	1	0	0	0	0
$st :: \langle v \rangle_0 \rightarrow s :: \langle =v v \rangle_1 t :: \langle v \rangle_0$	1	0	1	0	0	0
$\langle s,t \rangle :: \langle v, -wh \rangle_0 \rightarrow s :: \langle =d v \rangle_1 t :: \langle d -wh \rangle_1$	1	1	0	0	0	0
$\langle st, u \rangle :: \langle v, -wh \rangle_0 \rightarrow s :: \langle =v v \rangle_1 \langle t, u \rangle :: \langle v, -wh \rangle_0$	1	0	1	0	0	0

Solution: Have a rule's probability be a function of (only) "what it does"

- merge or move
- what feature is being checked (either movement or selection)

MCFG Rule	$\phi_{ ext{MERGE}}$	$\phi_{\mathtt{d}}$	$\phi_{\mathtt{v}}$	ϕ_{t}	$\phi_{ ext{move}}$	$\phi_{\tt wh}$
$st :: \langle c \rangle_0 \rightarrow s :: \langle =t c \rangle_1 t :: \langle t \rangle_0$	1	0	0	1	0	0
$ts :: \langle c \rangle_0 \rightarrow \langle s, t \rangle :: \langle +wh c, -wh \rangle_0$	0	0	0	0	1	1
$st :: \langle v \rangle_0 \rightarrow s :: \langle = d v \rangle_1 t :: \langle d \rangle_1$	1	1	0	0	0	0
$st :: \langle v \rangle_0 \rightarrow s :: \langle =v v \rangle_1 t :: \langle v \rangle_0$	1	0	1	0	0	0
$\langle s,t \rangle :: \langle v, -wh \rangle_0 \rightarrow s :: \langle =d v \rangle_1 t :: \langle d -wh \rangle_1$	1	1	0	0	0	0
$\langle st, u \rangle :: \langle \mathtt{v}, -\mathtt{wh} \rangle_0 \ \rightarrow \ s :: \langle \mathtt{=v} \ \mathtt{v} \rangle_1 \langle t, u \rangle :: \langle \mathtt{v}, -\mathtt{wh} \rangle_0 \ \Big $	1	0	1	0	0	0

Solution: Have a rule's probability be a function of (only) "what it does"

- merge or move
- what feature is being checked (either movement or selection)

MCFG Rule	$\phi_{ ext{MERGE}}$	$\phi_{\mathtt{d}}$	$\phi_{\mathtt{v}}$	ϕ_{t}	$\phi_{ ext{move}}$	$\phi_{\mathtt{wh}}$
$st :: \langle c \rangle_0 \rightarrow s :: \langle =t c \rangle_1 t :: \langle t \rangle_0$	1	0	0	1	0	0
$ts :: \langle c \rangle_0 \rightarrow \langle s, t \rangle :: \langle +wh c, -wh \rangle_0$	0	0	0	0	1	1
$st :: \langle v \rangle_0 \rightarrow s :: \langle = d v \rangle_1 t :: \langle d \rangle_1$	1	1	0	0	0	0
$st :: \langle v \rangle_0 \rightarrow s :: \langle =v v \rangle_1 t :: \langle v \rangle_0$	1	0	1	0	0	0
$\langle s, t \rangle :: \langle v, -wh \rangle_0 \rightarrow s :: \langle =d v \rangle_1 t :: \langle d -wh \rangle_1$	1	1	0	0	0	0
$\langle st, u \rangle ::: \langle \mathtt{v}, -\mathtt{wh} \rangle_0 \ \rightarrow \ s ::: \langle = \mathtt{v} \ \mathtt{v} \rangle_1 \langle t, u \rangle ::: \langle \mathtt{v}, -\mathtt{wh} \rangle_0 \ \Big $	1	0	1	0	0	0

$$\begin{split} s(r) &= \exp(\lambda \cdot \phi(r)) \\ &= \exp(\lambda_{\text{MERGE}} \phi_{\text{MERGE}}(r) + \lambda_{\text{d}} \phi_{\text{d}}(r) + \lambda_{\text{v}} \phi_{\text{v}}(r) + \dots) \\ &\quad s(r_1) = \exp(\lambda_{\text{MERGE}} + \lambda_{\text{t}}) \\ &\quad s(r_2) = \exp(\lambda_{\text{MOVE}} + \lambda_{\text{wh}}) \\ &\quad s(r_3) = \exp(\lambda_{\text{MERGE}} + \lambda_{\text{d}}) \end{split}$$

Solution: Have a rule's probability be a function of (only) "what it does"

- merge or move
- what feature is being checked (either movement or selection)

MCFG Rule	$\phi_{ ext{MERGE}}$	$\phi_{\mathtt{d}}$	$\phi_{\mathtt{v}}$	ϕ_{t}	$\phi_{ ext{move}}$	$\phi_{\mathtt{wh}}$
$st :: \langle c \rangle_0 \rightarrow s :: \langle =t c \rangle_1 t :: \langle t \rangle_0$	1	0	0	1	0	0
$ts :: \langle c \rangle_0 \rightarrow \langle s, t \rangle :: \langle +wh c, -wh \rangle_0$	0	0	0	0	1	1
$st :: \langle v \rangle_0 \rightarrow s :: \langle = d v \rangle_1 t :: \langle d \rangle_1$	1	1	0	0	0	0
$st :: \langle v \rangle_0 \rightarrow s :: \langle =v v \rangle_1 t :: \langle v \rangle_0$	1	0	1	0	0	0
$\langle s,t \rangle :: \langle v, -wh \rangle_0 \rightarrow s :: \langle =d v \rangle_1 t :: \langle d -wh \rangle_1$	1	1	0	0	0	0
$\langle st, u \rangle :: \langle \mathtt{v}, \mathtt{-wh} \rangle_0 \ \rightarrow \ s :: \langle \mathtt{=v} \ \mathtt{v} \rangle_1 \langle t, u \rangle :: \langle \mathtt{v}, \mathtt{-wh} \rangle_0$	1	0	1	0	0	0

$$\begin{split} s(r) &= \exp(\lambda \cdot \phi(r)) \\ &= \exp(\lambda_{\text{MERGE}} \phi_{\text{MERGE}}(r) + \lambda_{\text{d}} \phi_{\text{d}}(r) + \lambda_{\text{v}} \phi_{\text{v}}(r) + \dots) \\ &\quad s(r_1) = \exp(\lambda_{\text{MERGE}} + \lambda_{\text{t}}) \\ &\quad s(r_2) = \exp(\lambda_{\text{MOVE}} + \lambda_{\text{vh}}) \\ &\quad s(r_3) = \exp(\lambda_{\text{MERGE}} + \lambda_{\text{d}}) \\ &\quad s(r_5) = \exp(\lambda_{\text{MERGE}} + \lambda_{\text{d}}) \end{split}$$

Easy probabilities Different frameworks Problem #1 Problem #2 Solution: Faithfulness to MG operations

Generalizations missed by the naive parametrization

$$st :: \langle v \rangle_0 \quad o \quad s :: \langle = v \ v \rangle_1 \quad t :: \langle v \rangle_0$$

Easy probabilities Different frameworks Problem #1 Problem #2 So	olution: Faithfulness to MG operations
--	--

Generalizations missed by the naive parametrization

$$st :: \langle v \rangle_0 \rightarrow s :: \langle =v v \rangle_1 \quad t :: \langle v \rangle_0$$

$$(\mathsf{st}, u) :: \langle \mathtt{v}, -\mathtt{wh} \rangle_0 \quad \rightarrow \quad \mathsf{s} :: \langle \mathtt{=v} \ \mathtt{v} \rangle_1 \quad \langle t, u \rangle :: \langle \mathtt{v}, -\mathtt{wh} \rangle_0$$

		Solution: Faithfulness to MG operations
Comparison		

The old way:

λ_1	$ts::\langle c angle_0$	\rightarrow	$\langle s,t angle$:: (+wh	$c, -wh \rangle_0$
λ_2	st :: $\langle c \rangle_0$	\rightarrow	$s :: \langle \texttt{=t c} \rangle_1$	$t :: \langle t \rangle_0$
λ_3	st :: $\langle v \rangle_0$	\rightarrow	s :: $\langle \texttt{=d} v \rangle_1$	$t :: \langle d \rangle_1$
λ_4	st :: $\langle v \rangle_0$	\rightarrow	s :: $\langle = v v \rangle_1$	$t :: \langle v \rangle_0$
λ_5	$\langle s, t \rangle :: \langle v, -wh \rangle_0$	\rightarrow	s :: $\langle \texttt{=d} v \rangle_1$	$t :: \langle \texttt{d} - \texttt{wh} \rangle_1$
λ_6	$\langle st, u \rangle :: \langle v, -wh \rangle_0$	\rightarrow	$s :: \langle = v v \rangle_1$	$\langle t, u \rangle :: \langle v, -wh \rangle_0$

Training question: What values of λ_1 , λ_2 , etc. make the training corpus most likely?

The new way:

$\exp(\lambda_{ ext{MOVE}}+\lambda_{ ext{wh}})$	$ts :: \langle c \rangle_0$	\rightarrow	$\langle s,t angle$:: \langle +wh	$c, -wh \rangle_0$
$\exp(\lambda_{\text{\tiny MERGE}} + \lambda_{\texttt{t}})$	st :: $\langle c \rangle_0$	\rightarrow	s :: $\langle \texttt{=t c} \rangle_1$	$t::\langle t \rangle_0$
$\exp(\lambda_{\scriptscriptstyle \mathrm{MERGE}} + \lambda_{\tt d})$	$st :: \langle v \rangle_0$	\rightarrow	s :: $\langle = d v \rangle_1$	$t :: \langle d \rangle_1$
$\exp(\lambda_{\scriptscriptstyle \mathrm{MERGE}} + \lambda_{\tt v})$	$st :: \langle v \rangle_0$	\rightarrow	s :: $\langle = v v \rangle_1$	$t :: \langle v \rangle_0$
$\exp(\lambda_{\scriptscriptstyle \mathrm{MERGE}} + \lambda_{\tt d})$	$\langle s,t angle$:: $\langle v,-wh angle_0$	\rightarrow	s :: $\langle = d v \rangle_1$	t :: $\langle \texttt{d} - \texttt{w}\texttt{h} \rangle_1$
$\exp(\lambda_{\scriptscriptstyle \mathrm{MERGE}} + \lambda_{\tt v})$	$\langle st, u \rangle :: \langle v, -wh \rangle_0$	\rightarrow	s :: $\langle = v v \rangle_1$	$\langle t, u \rangle :: \langle v, -wh \rangle_0$

Training question: What values of $\lambda_{\rm MERGE},\,\lambda_{\rm MOVE},\,\lambda_{\rm d},$ etc. make the training corpus most likely?

Solution #1 with the smarter parametrization

\sim	-		-	~ "	
G	٢d	m		ar	

pierre :: d	who :: d - wh
marie :: d	<i>will</i> :: =v =d t
praise :: =d v	ϵ :: =t c
often :: =v v	$\epsilon :: =t +wh c$

Training data

- 90 pierre will praise marie
 - 5 pierre will often praise marie
 - 1 who pierre will praise
 - 1 who pierre will often praise

Maximise likelihood via stochastic gradient ascent:

$${\cal P}_{oldsymbol{\lambda}}({\sf N} o \delta) = rac{\exp({oldsymbol{\lambda}}\cdot \phi({\sf N} o \delta))}{\sum\exp({oldsymbol{\lambda}}\cdot \phi({\sf N} o \delta'))}$$

Solution #1 with the smarter parametrization

\sim					
	rn	m	m	21	
	- a			a 1	

pierre :: d	who::d-wh
marie :: d	will :: =v =d t
praise :: =d v	ϵ :: =t c
often :: =v v	$\epsilon :: \texttt{=t +wh c}$

Training data

- 90 pierre will praise marie
 - 5 pierre will often praise marie
 - 1 who pierre will praise
 - 1 who pierre will often praise

Maximise likelihood via stochastic gradient ascent:

I

$$\mathcal{P}_{\boldsymbol{\lambda}}(\boldsymbol{N} o \delta) = rac{\exp(\boldsymbol{\lambda} \cdot \boldsymbol{\phi}(\boldsymbol{N} o \delta))}{\sum \exp(\boldsymbol{\lambda} \cdot \boldsymbol{\phi}(\boldsymbol{N} o \delta'))}$$

				naive	smarter
$st :: \langle v \rangle_0$	\rightarrow	$s :: \langle = d v \rangle_1$	$t::\langle \mathtt{d} angle_1$	0.95	0.94
$st :: \langle v \rangle_0$	\rightarrow	$s :: \langle = v v \rangle_1$	$t :: \langle v \rangle_0$	0.05	0.06
$\langle s,t\rangle :: \langle v, -wh \rangle_0$	\rightarrow	$s :: \langle = d v \rangle_1$	$t :: \langle d - wh \rangle_1$	0.67	0.94
$\langle st, u \rangle :: \langle v, -wh \rangle_0$	\rightarrow	$s :: \langle = v v \rangle_1$	$\langle t, u \rangle :: \langle v, -wh \rangle_0$	0.33	0.06

Different framework

Problem #1

Problem #

Solution: Faithfulness to MG operations

Solution #2 with the smarter parametrization

Language of both grammars

boys will shave boys will shave themselves who will shave who will shave themselves foo boys will shave foo boys will shave themselves

Training data

- 10 boys will shave
- 2 boys will shave themselves
- 3 who will shave
- 1 who will shave themselves
- 5 foo boys will shave

Different framework

Problem #1

Problem #

Solution: Faithfulness to MG operations

Solution #2 with the smarter parametrization

Language of both grammars

boys will shave boys will shave themselves who will shave who will shave themselves foo boys will shave foo boys will shave themselves

Training data

- 10 boys will shave
- 2 boys will shave themselves
- 3 who will shave
- 1 who will shave themselves
- 5 foo boys will shave

Merge and move distinct operations:

- 0.35478boys will shave0.35478foo boys will shave0.14801who will shave0.05022boys will shave themselves0.05022foo boys will shave themselves0.051022mob op will shave themselves
- 0.04199 who will shave themselves
Easy probabilities

Problem #2

Solution: Faithfulness to MG operations

Solution #2 with the smarter parametrization

Language of both grammars

boys will shave boys will shave themselves who will shave themselves foo boys will shave foo boys will shave themselves

Training data

- 10 boys will shave
- 2 boys will shave themselves
- 3 who will shave
- 1 who will shave themselves
- 5 foo boys will shave

Merge and move distinct operations:

0.35478	boys will shave
0.35478	foo boys will shave
0.14801	who will shave
0.05022	boys will shave themselves
0.05022	foo boys will shave themselves
0.04199	who will shave themselves

Merge and move unified:

0.35721	boys will shave
0.35721	foo boys will shave
0.095	who will shave
0.095	who will shave themselves
0.04779	boys will shave themselves
0.04779	foo boys will shave themselves

Easy probabilities

Problem #2

Solution: Faithfulness to MG operations

Solution #2 with the smarter parametrization

Language of both grammars

boys will shave boys will shave themselves who will shave who will shave themselves foo boys will shave foo boys will shave themselves

Training data

- 10 boys will shave
- 2 boys will shave themselves
- 3 who will shave
- 1 who will shave themselves
- 5 foo boys will shave

Merge and move distinct operations:

0.35478	boys will shave			
0.35478	foo boys will	shave		
0.14801	who will shave	/e		
0.05022	boys will share	ve themselves		
0.05022	foo boys will	shave themselves		
0.04199	who will shave themselves			
	Entropy	Entropy Reduction		
_	2.09 —			
who	0.76 1.33			
will	0.76 0.00			
shave	0.76 0.00			
themselves	0.00	0.76		

Merge and move unified:

0.35721	boys will shave			
0.35721	foo boys will	shave		
0.095	who will sha	ve		
0.095	who will sha	ve themselves		
0.04779	boys will sha	ve themselves		
0.04779	foo boys will shave themselves			
	Entropy	Entropy Reduction		
_	2.13	_		
who	1.00 1.13			
will	1.00 0.00			
shave	1.00 0.00			
themselves	0.00 1.00			

Easy probabilities

Solution #2 with the smarter parametrization

Language of both grammars

boys will shave boys will shave themselves who will shave who will shave themselves foo boys will shave foo boys will shave themselves

Training data

- 10 boys will shave
- 2 boys will shave themselves
- 3 who will shave
- 1 who will shave themselves
- 5 foo boys will shave

Merge and move distinct operations:

0.35478	boys will shave
0.35478	foo boys will shave
0.14801	who will shave
0.05022	boys will shave themselves
0.05022	foo boys will shave themselves
0.04199	who will shave themselves

Merge and move unified:

0.35721	boys will shave
0.35721	foo boys will shave
0.095	who will shave
0.095	who will shave themselves
0.04779	boys will shave themselves
0.04779	foo boys will shave themselves

gDET-img.10-2-3-1-5.TEST-WHO-REFL.13233 Total ER: 2.125575

			Solution: Faithfulness to MG operations
Choice poin	ts in the MG-de	rived MCFG	
Question o	r not?		
$egin{array}{cc} \langle c angle_0 & ightarrow \ \langle c angle_0 & ightarrow \end{array} \ \langle c angle_0 & ightarrow \end{array}$	$ \begin{array}{l} \langle \texttt{=t } c \rangle_0 & \langle \texttt{t} \rangle_0 \\ \langle \texttt{+wh } c, \texttt{-wh} \rangle_0 \end{array} $		
Antocodont	lovical or complex	7	

Antecedent lexical or complex?

$\langle \texttt{ant -subj} \rangle_0$	\rightarrow	$\langle \texttt{=subj ant -subj} angle_1$	$\langle \texttt{subj} \rangle_0$
$\langle \texttt{ant} - \texttt{subj} \rangle_0$	\rightarrow	$\langle \texttt{=subj ant -subj} angle_1$	$\langle \texttt{subj} angle_1$

Non-wh subject merged and complex, merged and lexical, or moved?

$\langle t \rangle_0$	\rightarrow	$\langle \texttt{=subj t} \rangle_0$	$\langle \texttt{subj} \rangle_0$
$\langle t \rangle_0$	\rightarrow	$\langle \texttt{=subj t} \rangle_0$	$\langle \texttt{subj} angle_1$
$\langle t angle_0$	\rightarrow	$\langle \texttt{+subj t}, \texttt{-s} \rangle$	ubj \rangle_0

$\langle \texttt{t}, \texttt{-wh} angle_0$	\rightarrow	$\langle \texttt{=subj t} angle_0$	$\langle \texttt{subj -wh} angle_1$
$\langle \texttt{t}, \texttt{-wh} angle_0$	\rightarrow	$\langle +subj t, -s \rangle$	$\mathtt{ubj}, \mathtt{-wh}_0$

Choice points in the MG-derived MCFG

Question	or	not?
----------	----	------

$\langle c \rangle_0$	\rightarrow	$\langle \texttt{=t c} \rangle_0$	$\langle {\tt t} angle_0$	$\exp(\lambda_{\text{\tiny MERGE}} + \lambda_{\texttt{t}})$
$\langle c angle_0$	\rightarrow	$\langle +wh \ c, -$	wh $ angle_0$	$\exp(\lambda_{\text{\tiny MOVE}}+\lambda_{\texttt{wh}})$

Antecedent	lexical	or	comp	lex?
------------	---------	----	------	------

$\langle \texttt{ant} - \texttt{subj} \rangle_0$	\rightarrow	$\langle \texttt{=subj ant -subj} angle_1$	$\langle \texttt{subj} \rangle_0$	$\exp(\lambda_{ ext{merge}} + \lambda_{ ext{subj}})$
$\langle \texttt{ant} - \texttt{subj} \rangle_0$	\rightarrow	$\langle \texttt{=subj ant -subj} angle_1$	$\langle \texttt{subj} angle_1$	$\exp(\lambda_{ ext{merge}} + \lambda_{ ext{subj}})$

Non-wh subject merged and complex, merged and lexical, or moved?

$\langle \texttt{t} angle_0$	\rightarrow	$\langle \texttt{=subj t} \rangle_0$	$\langle \texttt{subj} angle_0$	$\exp(\lambda_{ ext{merge}} + \lambda_{ ext{subj}})$
$\langle t \rangle_0$	\rightarrow	$\langle =$ subj t \rangle_0	$\langle \texttt{subj} angle_1$	$\exp(\lambda_{ ext{merge}} + \lambda_{ ext{subj}})$
$\langle t angle_0$	\rightarrow	$\langle \texttt{+subj t}, \texttt{-s} \rangle$	ubj $ angle_0$	$\exp(\lambda_{\text{move}} + \lambda_{\texttt{subj}})$

$\langle \texttt{t}, \texttt{-wh} \rangle_0$	\rightarrow	$\langle \texttt{=subj t} \rangle_0 \langle \texttt{subj -wh} \rangle_1$	$\exp(\lambda_{ ext{merge}} + \lambda_{ ext{subj}})$
$\langle \texttt{t}, \texttt{-wh} \rangle_0$	\rightarrow	$\langle\texttt{+subj} \texttt{t}, \texttt{-subj}, \texttt{-wh}\rangle_0$	$\exp(\lambda_{\text{move}} + \lambda_{\texttt{subj}})$

Easy probabilities	Different frameworks		Solution: Faithfulness to MG operations
Learned weigh	nts on the MG		
$egin{aligned} \lambda_{ extsf{t}} &= 0.094350 \ \lambda_{ extsf{subj}} &= -5.734063 \ \lambda_{ extsf{wh}} &= -0.094350 \ \lambda_{ extsf{wh}} &= 0.629109 \ \lambda_{ extsf{MOVE}} &= -0.629109 \ \end{array}$	$\begin{split} \exp(\lambda_{ ext{t}}) &= 1.0989 \ \exp(\lambda_{ ext{v}}) &= 0.0032 \ \exp(\lambda_{ ext{wh}}) &= 0.9100 \ \exp(\lambda_{ ext{MERGE}}) &= 1.8759 \ \exp(\lambda_{ ext{MOVE}}) &= 0.5331 \end{split}$		

Easy probabilities	Different frameworks	Froblem #1	Froblem #2	Solution: Faithfulness to IVG operations
Learned weigh	its on the MG			
			P(antecedent	is lexical) = 0.5
$\lambda_{ ext{t}} = 0.094350$	$\exp(\lambda_{ ext{t}}) = 1.0989$	F	P(antecedent is no	pn-lexical) = 0.5
$\lambda_{ ext{subj}} = -5.734063$	$\exp(\lambda_v) = 0.0032$			
$\lambda_{\mathtt{wh}} = -0.094350$	$\exp(\lambda_{\mathtt{wh}}) = 0.9100$	D(hh.		$\exp(\lambda_{ ext{MOVE}})$ 0.2212
$\lambda_{\scriptscriptstyle m MERGE}=0.629109$	$\exp(\lambda_{\scriptscriptstyle \mathrm{MERGE}}) = 1.8759$	P(wn-pnra	ise reflexivized) =	$\frac{1}{\exp(\lambda_{\text{MERGE}}) + \exp(\lambda_{\text{MOVE}})} = 0.2213$
$\lambda_{ ext{MOVE}} = -0.629109$	$\exp(\lambda_{ ext{MOVE}}) = 0.5331$ f	^D (wh-phrase n	on-reflexivized) =	$rac{\exp(\lambda_{ ext{MERGE}})}{\exp(\lambda_{ ext{MERGE}})+\exp(\lambda_{ ext{MOVE}})}=0.7787$

$$P(\text{question}) = \frac{\exp(\lambda_{\text{MOVE}} + \lambda_{\text{wh}})}{\exp(\lambda_{\text{MERGE}} + \lambda_{\text{t}}) + \exp(\lambda_{\text{MOVE}} + \lambda_{\text{wh}})} = 0.1905$$
$$P(\text{non-question}) = \frac{\exp(\lambda_{\text{MERGE}} + \lambda_{\text{t}})}{\exp(\lambda_{\text{MERGE}} + \lambda_{\text{t}}) + \exp(\lambda_{\text{MOVE}} + \lambda_{\text{wh}})} = 0.8095$$

$$P(\text{non-wh subject merged and complex}) = \frac{\exp(\lambda_{\text{MERGE}})}{\exp(\lambda_{\text{MERGE}}) + \exp(\lambda_{\text{MERGE}}) + \exp(\lambda_{\text{MOVE}})} = 0.4378$$

$$P(\text{non-wh subject merged and lexical}) = \frac{\exp(\lambda_{\text{MERGE}})}{\exp(\lambda_{\text{MERGE}}) + \exp(\lambda_{\text{MERGE}}) + \exp(\lambda_{\text{MOVE}})} = 0.4378$$

$$P(\text{non-wh subject moved}) = \frac{\exp(\lambda_{\text{MERGE}}) + \exp(\lambda_{\text{MERGE}}) + \exp(\lambda_{\text{MOVE}})}{\exp(\lambda_{\text{MERGE}}) + \exp(\lambda_{\text{MERGE}}) + \exp(\lambda_{\text{MOVE}})} = 0.1244$$

Lasy probabilities		FIODIeIII #1	Froblem #2	Solution. Faithfulless to Wid operations
Learned weigh	nts on the MG			
			P(antecedent	is lexical) = 0.5
$\lambda_{ extsf{t}} = 0.094350$	$\exp(\lambda_{ ext{t}}) = 1.0989$	1	P(antecedent is no	pn-lexical) = 0.5
$\lambda_{ ext{subj}} = -5.734063$	$\exp(\lambda_{v}) = 0.0032$			
$\lambda_{\mathtt{wh}} = -0.094350$	$\exp(\lambda_{\mathtt{wh}}) = 0.9100$	D(hh.		$\exp(\lambda_{ ext{MOVE}})$ 0.2212
$\lambda_{\scriptscriptstyle m MERGE}=$ 0.629109	$\exp(\lambda_{\scriptscriptstyle \mathrm{MERGE}}) = 1.8759$	P(wn-phrase reflexivized) =	ase reflexivized) =	$\frac{1}{\exp(\lambda_{\text{MERGE}}) + \exp(\lambda_{\text{MOVE}})} = 0.2213$
$\lambda_{ ext{MOVE}} = -0.629109$	$\exp(\lambda_{ ext{MOVE}}) = 0.5331$ /	^D (wh-phrase n	ion-reflexivized) =	$rac{\exp(\lambda_{ ext{MERGE}})}{\exp(\lambda_{ ext{MERGE}})+\exp(\lambda_{ ext{MOVE}})}=0.7787$

$$P(\text{question}) = \frac{\exp(\lambda_{\text{MOVE}} + \lambda_{\text{wh}})}{\exp(\lambda_{\text{MERGE}} + \lambda_{\text{t}}) + \exp(\lambda_{\text{MOVE}} + \lambda_{\text{wh}})} = 0.1905$$
$$P(\text{non-question}) = \frac{\exp(\lambda_{\text{MERGE}} + \lambda_{\text{t}})}{\exp(\lambda_{\text{MERGE}} + \lambda_{\text{t}}) + \exp(\lambda_{\text{MOVE}} + \lambda_{\text{wh}})} = 0.8095$$

$$P(\text{non-wh subject merged and complex}) = \frac{\exp(\lambda_{\text{MERGE}})}{\exp(\lambda_{\text{MERGE}}) + \exp(\lambda_{\text{MERGE}}) + \exp(\lambda_{\text{MOVE}})} = 0.4378$$

$$P(\text{non-wh subject merged and lexical}) = \frac{\exp(\lambda_{\text{MERGE}})}{\exp(\lambda_{\text{MERGE}}) + \exp(\lambda_{\text{MERGE}}) + \exp(\lambda_{\text{MOVE}})} = 0.4378$$

$$P(\text{non-wh subject moved}) = \frac{\exp(\lambda_{\text{MERGE}}) + \exp(\lambda_{\text{MERGE}}) + \exp(\lambda_{\text{MOVE}})}{\exp(\lambda_{\text{MERGE}}) + \exp(\lambda_{\text{MERGE}}) + \exp(\lambda_{\text{MOVE}})} = 0.1244$$

$$P(\text{who will shave}) = 0.1905 \times 0.7787 = 0.148$$

 $P(\text{boys will shave themselves}) = 0.5 \times 0.8095 \times 0.1244 = 0.050$

177 / 196

Choice points in the IMG-derived MCFG

Question or not?

$\langle -c \rangle_0$	\rightarrow	$\langle \texttt{+t} \ \texttt{-c}, \texttt{-t} angle_1$
$\langle -c \rangle_0$	\rightarrow	$\langle \texttt{+wh} - \texttt{c}, \texttt{-wh} \rangle_0$

Antecedent lexical or complex?

$\langle \texttt{+subj} - \texttt{ant} - \texttt{subj}, -\texttt{subj} \rangle_0$	\rightarrow	$\langle \texttt{+subj} - \texttt{ant} - \texttt{subj} angle_0$	$\langle -subj \rangle_0$
$\langle \texttt{+subj} - \texttt{ant} - \texttt{subj}, -\texttt{subj} \rangle_0$	\rightarrow	$\langle \texttt{+subj} - \texttt{ant} - \texttt{subj} angle_0$	$\langle \texttt{-subj} \rangle_1$

Non-wh subject merged and complex, merged and lexical, or moved?

$\langle \texttt{+subj} - \texttt{t}, \texttt{-subj} \rangle_0$	\rightarrow	$\langle \texttt{+subj} \ \texttt{-t} angle_0$	$\langle - \texttt{subj} \rangle_0$
$\langle\texttt{+subj}~\texttt{-t},\texttt{-subj}\rangle_0$	\rightarrow	$\langle \texttt{+subj -t} angle_0$	$\langle \texttt{-subj} angle_1$
$\langle \texttt{+subj} \ \texttt{-t}, \texttt{-subj} \rangle_0$	\rightarrow	<pre>(+v +subj -t,</pre>	$-v, -subj \rangle_1$

$\langle -t, -wh \rangle_0$	\rightarrow	$\langle \texttt{+subj -t}, \texttt{-subj -wh} \rangle_0$
$\langle -t, -wh \rangle_0$	\rightarrow	$\langle \texttt{+subj} -\texttt{t}, \texttt{-subj}, \texttt{-wh} \rangle_0$

Easv	bro	ווס	ITI	

Choice points in the IMG-derived MCFG

Question	or	not?
----------	----	------

$\langle -c \rangle_0$	\rightarrow	$\langle \texttt{+t} \ \texttt{-c}, \texttt{-t} angle_1$	$\exp(\lambda_{\scriptscriptstyle \rm MRG}+\lambda_{\tt t})$
$\langle -c \rangle_0$	\rightarrow	$\langle\texttt{+wh}~\texttt{-c},\texttt{-wh}\rangle_0$	$\exp(\lambda_{\scriptscriptstyle \rm MRG}+\lambda_{\tt wh})$

Antecedent	lexical	or	comp	lex?
------------	---------	----	------	------

$\langle \texttt{+subj} - \texttt{ant} - \texttt{subj}, -\texttt{subj} \rangle_0$	\rightarrow	$\langle \texttt{+subj} - \texttt{ant} - \texttt{subj} angle_0$	$\langle -\texttt{subj} \rangle_0$	$\exp(\lambda_{\scriptscriptstyle \rm INSERT})$
$\langle \texttt{+subj} - \texttt{ant} - \texttt{subj}, -\texttt{subj} \rangle_0$	\rightarrow	$\langle \texttt{+subj} - \texttt{ant} - \texttt{subj} angle_0$	$\langle \texttt{-subj} \rangle_1$	$\exp(\lambda_{\scriptscriptstyle \rm INSERT})$

Non-wh subject merged and complex, merged and lexical, or moved?

$\langle \texttt{+subj} \ \texttt{-t}, \texttt{-subj} \rangle_0$	\rightarrow	$\langle \texttt{+subj} - \texttt{t} \rangle_0$	$\langle - \texttt{subj} \rangle_0$	$\exp(\lambda_{\scriptscriptstyle \rm INSERT})$
$\langle \texttt{+subj} \ \texttt{-t}, \texttt{-subj} \rangle_0$	\rightarrow	$\langle \texttt{+subj} \ \texttt{-t} angle_0$	$\langle \texttt{-subj} \rangle_1$	$\exp(\lambda_{\scriptscriptstyle \rm INSERT})$
$\langle\texttt{+subj}~\texttt{-t},\texttt{-subj}\rangle_0$	\rightarrow	$\langle \texttt{+v} \texttt{+subj} \texttt{-t},$	$\texttt{-v},\texttt{-subj}\rangle_1$	$\exp(\lambda_{\scriptscriptstyle \rm MRG}+\lambda_{\tt v})$

$\langle\texttt{-t},\texttt{-wh}\rangle_0$	\rightarrow	$\langle \texttt{+subj} \ \texttt{-t}, \texttt{-subj} \ \texttt{-wh} \rangle_0$	$\exp(\lambda_{\scriptscriptstyle \rm MRG} + \lambda_{\tt subj})$
$\langle \texttt{-t}, \texttt{-wh} \rangle_0$	\rightarrow	$\langle \texttt{+subj} \ \texttt{-t}, \texttt{-subj}, \texttt{-wh} \rangle_0$	$\exp(\lambda_{\scriptscriptstyle \rm MRG} + \lambda_{\tt subj})$

	Different frameworks	Problem #1	Solution: Faithfulness to MG operations
Learned weig	ghts on the IMG		
$\lambda_{ t t}=0.72$	23549 $exp(\lambda_t) =$	= 2.0617	
$\lambda_{ m v}=$ 0.4	40585 $\exp(\lambda_v) =$	= 1.5536	
$\lambda_{ ext{wh}} = -0$.723459 $\exp(\lambda_{wh}) =$	= 0.4850	
$\lambda_{ ext{insert}} = 0.4$	40585 $exp(\lambda_{INSERT}) =$	= 1.5536	

 $\exp(\lambda_{_{
m MRG}})=0.6437$

 $\lambda_{\scriptscriptstyle \mathrm{MRG}} = -0.440585$

			Problem #2	Solution: Faithfulness to MG operations
Learned weig	hts on the IMG			
$egin{aligned} \lambda_{ extsf{t}} &= 0.72 \ \lambda_{ extsf{v}} &= 0.44 \ \lambda_{ extsf{wh}} &= -0.72 \end{aligned}$	3549 $exp(\lambda_t) = 2$ 0585 $exp(\lambda_v) = 1$ 723459 $exp(\lambda_{wh}) = 0$	2.0617 1.5536 0.4850	P(antecede P(antecedent is	ent is lexical) $= 0.5$ 5 non-lexical) $= 0.5$
$\lambda_{ ext{insert}} = 0.44$	0585 $\exp(\lambda_{\text{INSERT}}) = 1$	1.5536	P(wh-phras	e reflexivized) = 0.5
$\lambda_{\scriptscriptstyle m MRG}=-0.4$	440585 $\exp(\lambda_{\scriptscriptstyle \mathrm{MRG}})=0$	0.6437	P(wh-phrase no	n-reflexivized) = 0.5
P(que P(non-que	$ ext{estion}) = rac{ ext{exp}(\lambda_{ ext{MRG}}+\lambda_{ ext{t}})}{ ext{exp}(\lambda_{ ext{MRG}}+\lambda_{ ext{t}})}$ $ ext{estion}) = rac{ ext{exp}(\lambda}{ ext{exp}(\lambda_{ ext{MRG}}+\lambda_{ ext{t}}))}$	$egin{aligned} & & \left(\lambda_{\mathtt{wh}} + \lambda_{\mathtt{wh}}\right) \ & + \exp(\lambda_{\mathtt{MRG}} + \lambda_{\mathtt{wh}}) \ & \left(\lambda_{\mathtt{MRG}} + \lambda_{\mathtt{t}}\right) \ & + \exp(\lambda_{\mathtt{MRG}} + \lambda_{\mathtt{wh}}) \end{aligned}$	$= \frac{\exp(\lambda_{\mathtt{wh}})}{\exp(\lambda_{\mathtt{t}}) + \exp(\lambda_{\mathtt{t}})}$ $= \frac{\exp(\lambda_{\mathtt{t}})}{\exp(\lambda_{\mathtt{t}}) + \exp(\lambda_{\mathtt{t}})}$	$rac{\partial (\lambda_{vh})}{\partial (\lambda_{vh})} = 0.1905$ $rac{\partial (\lambda_{vh})}{\partial (\lambda_{vh})} = 0.8095$
P(non-wh su	bject merged and lexical)	$=rac{\epsilon}{\exp(\lambda_{ ext{insert}})+\epsilon x}$	$\frac{\exp(\lambda_{\text{INSERT}})}{\exp(\lambda_{\text{INSERT}}) + \exp(\lambda_{\text{INSERT}})}$	$\overline{\lambda_{_{\mathrm{MRG}}}+\lambda_{\mathrm{v}})}=0.4412$
P(non-wh subje	ect merged and complex)	$= \frac{1}{\exp(\lambda_{\text{INSERT}}) + \exp(\lambda_{\text{INSERT}})}$	$p(\lambda_{\text{INSERT}}) + exp(\lambda_{\text{INSERT}})$	$\overline{\lambda_{_{\mathrm{MRG}}}+\lambda_{\mathrm{v}})}=0.4412$

$$P(\text{non-wh subject moved}) = \frac{\exp(\lambda_{\text{\tiny NNG}} + \lambda_{\text{\tiny V}})}{\exp(\lambda_{\text{\tiny INSERT}}) + \exp(\lambda_{\text{\tiny INSERT}}) + \exp(\lambda_{\text{\tiny MRG}} + \lambda_{\text{\tiny V}})} = 0.1176$$

	Different frameworks	Problem #1		Solution: Faithfulness to MG operations
Learned weig	nts on the IMG			
$\lambda_{t} = 0.723$ $\lambda_{v} = 0.440$ $\lambda_{v} = -0.723$	$\begin{array}{ll} 2549 & \exp(\lambda_t) = \\ 2585 & \exp(\lambda_v) = \\ 23459 & \exp(\lambda_v) = \end{array}$	2.0617 1.5536 0.4850	P(antecede P(antecedent is	ent is lexical) $= 0.5$ is non-lexical) $= 0.5$
$\lambda_{ m MN} = -0.1$ $\lambda_{ m INSERT} = 0.440$ $\lambda_{ m MRG} = -0.4$	$\begin{array}{l} 25753 \qquad \exp(\lambda_{\rm INSERT}) = \\ 2585 \qquad \exp(\lambda_{\rm INSERT}) = \\ 40585 \qquad \exp(\lambda_{\rm MRG}) = \end{array}$	1.5536 0.6437	P(wh-phrase P(wh-phrase not	e reflexivized) = 0.5 n-reflexivized) = 0.5
P(que	$ ext{stion}) = rac{ ext{exp}(\lambda)}{ ext{exp}(\lambda_{ ext{MRG}} + \lambda_{ ext{t}})}$	$egin{aligned} & \lambda_{ ext{MRG}} + \lambda_{ ext{wh}} \end{pmatrix} \ & egin{aligned} & \lambda_{ ext{MRG}} + \lambda_{ ext{wh}} \end{pmatrix} \end{aligned}$	$=rac{ extsf{exp}(\lambda_{ extsf{wh}})}{ extsf{exp}(\lambda_{ extsf{t}})+ extsf{exp}(\lambda_{ extsf{t}})+ extsf{exp}(\lambda_{ extsf{thet}})}$	$\frac{1}{D(\lambda_{wh})} = 0.1905$
P(non-que	$ ext{stion}) = rac{ ext{exp}(\lambda_{ ext{MRG}} + \lambda_{ ext{t}})}{ ext{exp}(\lambda_{ ext{MRG}} + \lambda_{ ext{t}})}$	$rac{\lambda_{ ext{MRG}}+\lambda_{ extsf{t}})}{ig)+ ext{exp}(\lambda_{ ext{MRG}}+\lambda_{ ext{wh}})}$	$=rac{\exp(\lambda_{ ext{t}})}{\exp(\lambda_{ ext{t}})+\exp(\lambda_{ ext{t}})}$	$\overline{o(\lambda_{\tt wh})} = 0.8095$
P(non-wh sub	ject merged and lexical)	$0=rac{1}{\exp(\lambda_{ ext{INSERT}})+ ext{ext}}$	$\exp(\lambda_{ ext{insert}})$ $\exp(\lambda_{ ext{insert}}) + \exp(\lambda_{ ext{insert}})$	$\overline{\lambda_{_{ m MRG}}+\lambda_{ m v}}=0.4412$
P(non-wh subje	ct merged and complex)	= $($	$\exp(\lambda_{\text{INSERT}})$	= 0.4412

non-wh subject merged and complex) =
$$\frac{\exp(\lambda_{\text{INSERT}})}{\exp(\lambda_{\text{INSERT}}) + \exp(\lambda_{\text{INSERT}}) + \exp(\lambda_{\text{MRG}} + \lambda_{\text{v}})} = 0.4412$$
$$P(\text{non-wh subject moved}) = \frac{\exp(\lambda_{\text{MRG}} + \lambda_{\text{v}})}{\exp(\lambda_{\text{INSERT}}) + \exp(\lambda_{\text{MRG}} + \lambda_{\text{v}})} = 0.1176$$

 $P(\text{who will shave}) = 0.5 \times 0.1905 = 0.095$ $P(\text{boys will shave themselves}) = 0.5 \times 0.8095 \times 0.1176 = 0.048$ Billot, S. and Lang, B. (1989). The structure of shared forests in ambiguous parsing. In *Proceedings of the 1989 Meeting of the Association of Computational Linguistics*.

Chomsky, N. (1965). Aspects of the Theory of Syntax. MIT Press, Cambridge, MA.

Chomsky, N. (1980). Rules and Representations. Columbia University Press, New York.

- Ferreira, F. (2005). Psycholinguistics, formal grammars, and cognitive science. The Linguistic Review, 22:365–380.
- Gärtner, H.-M. and Michaelis, J. (2010). On the Treatment of Multiple-Wh Interrogatives in Minimalist Grammars. In Hanneforth, T. and Fanselow, G., editors, *Language and Logos*, pages 339–366. Akademie Verlag, Berlin.

Gibson, E. and Wexler, K. (1994). Triggers. Linguistic Inquiry, 25:407-454.

Hale, J. (2006). Uncertainty about the rest of the sentence. Cognitive Science, 30:643-Âŋ672.

- Hale, J. T. (2001). A probabilistic earley parser as a psycholinguistic model. In Proceedings of the Second Meeting of the North American Chapter of the Association for Computational Linguistics.
- Hunter, T. (2011). Insertion Minimalist Grammars: Eliminating redundancies between merge and move. In Kanazawa, M., Kornai, A., Kracht, M., and Seki, H., editors, *The Mathematics of Language (MOL 12 Proceedings)*, volume 6878 of *LNCS*, pages 90–107, Berlin Heidelberg. Springer.
- Hunter, T. and Dyer, C. (2013). Distributions on minimalist grammar derivations. In Proceedings of the 13th Meeting on the Mathematics of Language.

Koopman, H. and Szabolcsi, A. (2000). Verbal Complexes. MIT Press, Cambridge, MA.

References II

Lang, B. (1988). Parsing incomplete sentences. In Proceedings of the 12th International Conference on Computational Linguistics, pages 365–371.

Levy, R. (2008). Expectation-based syntactic comprehension. Cognition, 106(3):1126-1177.

- Michaelis, J. (2001). Derivational minimalism is mildly context-sensitive. In Moortgat, M., editor, Logical Aspects of Computational Linguistics, volume 2014 of LNCS, pages 179–198. Springer, Berlin Heidelberg.
- Miller, G. A. and Chomsky, N. (1963). Finitary models of language users. In Luce, R. D., Bush, R. R., and Galanter, E., editors, *Handbook of Mathematical Psychology*, volume 2. Wiley and Sons, New York.
- Morrill, G. (1994). Type Logical Grammar: Categorial Logic of Signs. Kluwer, Dordrecht.
- Nederhof, M. J. and Satta, G. (2008). Computing partition functions of pcfgs. Research on Language and Computation, 6(2):139–162.
- Seki, H., Matsumara, T., Fujii, M., and Kasami, T. (1991). On multiple context-free grammars. Theoretical Computer Science, 88:191–229.
- Stabler, E. P. (2006). Sidewards without copying. In Wintner, S., editor, Proceedings of The 11th Conference on Formal Grammar, pages 157–170, Stanford, CA. CSLI Publications.
- Stabler, E. P. (2011). Computational perspectives on minimalism. In Boeckx, C., editor, The Oxford Handbook of Linguistic Minimalism. Oxford University Press, Oxford.
- Stabler, E. P. and Keenan, E. L. (2003). Structural similarity within and among languages. *Theoretical Computer Science*, 293:345–363.

- Vijay-Shanker, K., Weir, D. J., and Joshi, A. K. (1987). Characterizing structural descriptions produced by various grammatical formalisms. In *Proceedings of the 25th Meeting of the Association for Computational Linguistics*, pages 104–111.
- Weir, D. (1988). Characterizing mildly context-sensitive grammar formalisms. PhD thesis, University of Pennsylvania.
- Yngve, V. H. (1960). A model and an hypothesis for language structure. In Proceedings of the American Philosophical Society, volume 104, pages 444–466.