
Sharpening the empirical claims of generative syntax
through formalization

Tim Hunter

University of Minnesota, Twin Cities

NASSLLI, June 2014

Part 1: Grammars and cognitive hypotheses
What is a grammar?
What can grammars do?
Concrete illustration of a target: Surprisal

Parts 2–4: Assembling the pieces
Minimalist Grammars (MGs)
MGs and MCFGs
Probabilities on MGs

Part 5: Learning and wrap-up
Something slightly different: Learning model
Recap and open questions

Sharpening the empirical claims of generative syntax
through formalization

Tim Hunter — NASSLLI, June 2014

Part 3

MGs and MCFGs

A different perspective on CFGs Concatenative and non-concatenative operations MCFGs Back to MGs

Where we’re up to

We’ve seen:

MGs with operations defined that manipulated trees
that the structure that “really matters” (e.g. for recursion) can be boiled
down to funny-looking “derivation trees” (with things like t, {-k} at the
non-leaf nodes)

Now:

A way to think of how these derivation trees relate to surface strings (without
going via trees)
In some ways not totally necessary for the rest of the course, but helpful

Later:

Adding probabilities to MGs: in a way that sort of works, and does some good
stuff, but doesn’t do everything we’d want
Adding probabilities to MGs: in an even better way

99 / 196

A different perspective on CFGs Concatenative and non-concatenative operations MCFGs Back to MGs

Outline

9 A different perspective on CFGs

10 Concatenative and non-concatenative operations

11 MCFGs

12 Back to MGs

100 / 196

A different perspective on CFGs Concatenative and non-concatenative operations MCFGs Back to MGs

Outline

9 A different perspective on CFGs

10 Concatenative and non-concatenative operations

11 MCFGs

12 Back to MGs

101 / 196

A different perspective on CFGs Concatenative and non-concatenative operations MCFGs Back to MGs

Trees

S

VP

NP

N
cake

V
likes

NP

N
boy

D
the

the boy likes cake :: S

likes cake :: VP

cake :: NP

cake :: N

likes :: V

the boy :: NP

boy :: Nthe :: D

How to think of a tree:

less as a picture of a string
more as a graphical representation of how a string was constructed, with the
string “at” the top node

102 / 196

A different perspective on CFGs Concatenative and non-concatenative operations MCFGs Back to MGs

Trees

S

VP

NP

N
cake

V
likes

NP

N
boy

D
the

the boy likes cake :: S

likes cake :: VP

cake :: NP

cake :: N

likes :: V

the boy :: NP

boy :: Nthe :: D

How to think of a tree:

less as a picture of a string
more as a graphical representation of how a string was constructed, with the
string “at” the top node

102 / 196

A different perspective on CFGs Concatenative and non-concatenative operations MCFGs Back to MGs

Two sides of a CFG rule

A rule like ‘S → NP VP’ says two things:

What combines with what:
An NP and a VP can combine to form an S

How to produce a string of the new category:
Put the NP-string to the left of the VP-string

More explicitly:
st :: S → s :: NP t :: VP

103 / 196

A different perspective on CFGs Concatenative and non-concatenative operations MCFGs Back to MGs

Example: X-bar theory

Japanese
XP → Spec X′
X′ → Comp X

English
XP → Spec X′
X′ → X Comp

Japanese
st :: XP → s :: Spec t :: X′
st :: X′ → s :: Comp t :: X

English
st :: XP → s :: Spec t :: X′
ts :: X′ → s :: Comp t :: X

John-ga Mary-o mita :: VP

Mary-o mita :: V′

mita :: VMary-o :: Comp

John-ga :: Spec

John saw Mary :: VP

saw Mary :: V′

saw :: VMary :: Comp

John :: Spec

104 / 196

A different perspective on CFGs Concatenative and non-concatenative operations MCFGs Back to MGs

Example: X-bar theory

Japanese
XP → Spec X′
X′ → Comp X

English
XP → Spec X′
X′ → X Comp

Japanese
st :: XP → s :: Spec t :: X′
st :: X′ → s :: Comp t :: X

English
st :: XP → s :: Spec t :: X′
ts :: X′ → s :: Comp t :: X

John-ga Mary-o mita :: VP

Mary-o mita :: V′

mita :: VMary-o :: Comp

John-ga :: Spec

John saw Mary :: VP

saw Mary :: V′

saw :: VMary :: Comp

John :: Spec

104 / 196

A different perspective on CFGs Concatenative and non-concatenative operations MCFGs Back to MGs

Example: X-bar theory

Japanese
XP → Spec X′
X′ → Comp X

English
XP → Spec X′
X′ → X Comp

Japanese
st :: XP → s :: Spec t :: X′
st :: X′ → s :: Comp t :: X

English
st :: XP → s :: Spec t :: X′
ts :: X′ → s :: Comp t :: X

John-ga Mary-o mita :: VP

Mary-o mita :: V′

mita :: VMary-o :: Comp

John-ga :: Spec

John saw Mary :: VP

saw Mary :: V′

saw :: VMary :: Comp

John :: Spec

104 / 196

A different perspective on CFGs Concatenative and non-concatenative operations MCFGs Back to MGs

Outline

9 A different perspective on CFGs

10 Concatenative and non-concatenative operations

11 MCFGs

12 Back to MGs

105 / 196

A different perspective on CFGs Concatenative and non-concatenative operations MCFGs Back to MGs

Concatenative and non-concatenative operations

Concatenative morphology:
play + ed played
play + ing playing
play + s plays

Non-concatenative morphology:
(k,t,b) + (i,aa) kitaab (“book”)
(k,t,b) + (aa,i) kaatib (“writer”)
(k,t,b) + (ma,uu) maktuub (“written”)
(k,t,b) + (a,i,a) katiba (“document”)

Concatenative syntax:
plays + tennis plays tennis
plays + soccer plays soccer
John + plays soccer John plays soccer
Mary + plays soccer Mary plays soccer

Non-concatenative syntax:
seems + (John, to be tall) John seems to be tall
seems + (Mary, to be intelligent) Mary seems to be intelligent
did + (John see, who) who did John see
did + (Mary meet, who) who did Mary meet

106 / 196

A different perspective on CFGs Concatenative and non-concatenative operations MCFGs Back to MGs

Concatenative and non-concatenative operations

Concatenative morphology:
play + ed played
play + ing playing
play + s plays

Non-concatenative morphology:
(k,t,b) + (i,aa) kitaab (“book”)
(k,t,b) + (aa,i) kaatib (“writer”)
(k,t,b) + (ma,uu) maktuub (“written”)
(k,t,b) + (a,i,a) katiba (“document”)

Concatenative syntax:
plays + tennis plays tennis
plays + soccer plays soccer
John + plays soccer John plays soccer
Mary + plays soccer Mary plays soccer

Non-concatenative syntax:
seems + (John, to be tall) John seems to be tall
seems + (Mary, to be intelligent) Mary seems to be intelligent
did + (John see, who) who did John see
did + (Mary meet, who) who did Mary meet

106 / 196

A different perspective on CFGs Concatenative and non-concatenative operations MCFGs Back to MGs

Concatenative and non-concatenative operations

Concatenative morphology:
play + ed played
play + ing playing
play + s plays

Non-concatenative morphology:
(k,t,b) + (i,aa) kitaab (“book”)
(k,t,b) + (aa,i) kaatib (“writer”)
(k,t,b) + (ma,uu) maktuub (“written”)
(k,t,b) + (a,i,a) katiba (“document”)

Concatenative syntax:
plays + tennis plays tennis
plays + soccer plays soccer
John + plays soccer John plays soccer
Mary + plays soccer Mary plays soccer

Non-concatenative syntax:
seems + (John, to be tall) John seems to be tall
seems + (Mary, to be intelligent) Mary seems to be intelligent
did + (John see, who) who did John see
did + (Mary meet, who) who did Mary meet 106 / 196

A different perspective on CFGs Concatenative and non-concatenative operations MCFGs Back to MGs

Non-concatenative morphology

kitaab :: A

〈i,aa〉 :: C〈k,t,b〉 :: B

kaatib :: A

〈aa,i〉 :: C〈k,t,b〉 :: B

kutub :: A

〈u,u〉 :: C〈k,t,b〉 :: B

stuvw :: A → 〈s, u,w〉 :: B 〈t, v〉 :: C

gespielt :: E

〈ge,t〉 :: Dspiel :: A

gekauft :: E

〈ge,t〉 :: Dkauf :: A

gemacht :: E

〈ge,t〉 :: Dmach :: A

stu :: E → t :: A 〈s, u〉 :: D

107 / 196

A different perspective on CFGs Concatenative and non-concatenative operations MCFGs Back to MGs

Non-concatenative morphology

kitaab :: A

〈i,aa〉 :: C〈k,t,b〉 :: B

kaatib :: A

〈aa,i〉 :: C〈k,t,b〉 :: B

kutub :: A

〈u,u〉 :: C〈k,t,b〉 :: B

stuvw :: A → 〈s, u,w〉 :: B 〈t, v〉 :: C

gespielt :: E

〈ge,t〉 :: Dspiel :: A

gekauft :: E

〈ge,t〉 :: Dkauf :: A

gemacht :: E

〈ge,t〉 :: Dmach :: A

stu :: E → t :: A 〈s, u〉 :: D

107 / 196

A different perspective on CFGs Concatenative and non-concatenative operations MCFGs Back to MGs

Non-concatenative morphology

stuvw :: A → 〈s, u,w〉 :: B 〈t, v〉 :: C
stu :: E → t :: A 〈s, u〉 :: D

〈ts, u〉 :: D → t :: F 〈s, u〉 :: D

gekitaabt :: E

〈ge,t〉 :: Dkitaab :: A

〈i,aa〉 :: C〈k,t,b〉 :: B

ausgekitaabt :: E

〈ausge,t〉 :: D

〈ge,t〉 :: Daus :: F

kitaab :: A

〈i,aa〉 :: C〈k,t,b〉 :: B

If our goal is to characterize the array of well-formed/derivable objects — not to
pronounce them — then all we care about is “what’s built out of what”:

A → B C
E → A D
D → F D

108 / 196

A different perspective on CFGs Concatenative and non-concatenative operations MCFGs Back to MGs

Non-concatenative morphology

stuvw :: A → 〈s, u,w〉 :: B 〈t, v〉 :: C
stu :: E → t :: A 〈s, u〉 :: D

〈ts, u〉 :: D → t :: F 〈s, u〉 :: D

gekitaabt :: E

〈ge,t〉 :: Dkitaab :: A

〈i,aa〉 :: C〈k,t,b〉 :: B

ausgekitaabt :: E

〈ausge,t〉 :: D

〈ge,t〉 :: Daus :: F

kitaab :: A

〈i,aa〉 :: C〈k,t,b〉 :: B

If our goal is to characterize the array of well-formed/derivable objects — not to
pronounce them — then all we care about is “what’s built out of what”:

A → B C
E → A D
D → F D

108 / 196

A different perspective on CFGs Concatenative and non-concatenative operations MCFGs Back to MGs

Non-concatenative morphology

stuvw :: A → 〈s, u,w〉 :: B 〈t, v〉 :: C
stu :: E → t :: A 〈s, u〉 :: D

〈ts, u〉 :: D → t :: F 〈s, u〉 :: D

gekitaabt :: E

〈ge,t〉 :: Dkitaab :: A

〈i,aa〉 :: C〈k,t,b〉 :: B

ausgekitaabt :: E

〈ausge,t〉 :: D

〈ge,t〉 :: Daus :: F

kitaab :: A

〈i,aa〉 :: C〈k,t,b〉 :: B

If our goal is to characterize the array of well-formed/derivable objects — not to
pronounce them — then all we care about is “what’s built out of what”:

A → B C
E → A D
D → F D

108 / 196

A different perspective on CFGs Concatenative and non-concatenative operations MCFGs Back to MGs

Non-concatenative morphology

stuvw :: A → 〈s, u,w〉 :: B 〈t, v〉 :: C
stu :: E → t :: A 〈s, u〉 :: D

〈ts, u〉 :: D → t :: F 〈s, u〉 :: D

gekitaabt :: E

〈ge,t〉 :: Dkitaab :: A

〈i,aa〉 :: C〈k,t,b〉 :: B

ausgekitaabt :: E

〈ausge,t〉 :: D

〈ge,t〉 :: Daus :: F

kitaab :: A

〈i,aa〉 :: C〈k,t,b〉 :: B

If our goal is to characterize the array of well-formed/derivable objects — not to
pronounce them — then all we care about is “what’s built out of what”:

A → B C
E → A D
D → F D

108 / 196

A different perspective on CFGs Concatenative and non-concatenative operations MCFGs Back to MGs

Outline

9 A different perspective on CFGs

10 Concatenative and non-concatenative operations

11 MCFGs

12 Back to MGs

109 / 196

A different perspective on CFGs Concatenative and non-concatenative operations MCFGs Back to MGs

Multiple Context-Free Grammars (MCFGs)

st :: S → s :: NP t :: VP

An MCFG generalises to allow yields to be tuples of strings.
t2st1 :: Q → s :: NP 〈t1, t2〉 :: VPWH

This rule says two things:

We can combine an NP with a VPWH to make a Q.
The yield of the Q is t2st1,
where s is the yield of the NP and 〈t1, t2〉 is the yield of the VPWH.

which girl the boy says is tall :: Q →
the boy :: NP 〈says is tall,which girl〉 :: VPWH

110 / 196

A different perspective on CFGs Concatenative and non-concatenative operations MCFGs Back to MGs

Multiple Context-Free Grammars (MCFGs)

st :: S → s :: NP t :: VP

An MCFG generalises to allow yields to be tuples of strings.
t2st1 :: Q → s :: NP 〈t1, t2〉 :: VPWH

This rule says two things:

We can combine an NP with a VPWH to make a Q.
The yield of the Q is t2st1,
where s is the yield of the NP and 〈t1, t2〉 is the yield of the VPWH.

which girl the boy says is tall :: Q →
the boy :: NP 〈says is tall,which girl〉 :: VPWH

110 / 196

A different perspective on CFGs Concatenative and non-concatenative operations MCFGs Back to MGs

Some technical details

Each nonterminal has a rank n, and yields only n-tuples of strings.

So given this rule:
t2st1 :: Q → s :: NP 〈t1, t2〉 :: VPWH

we know that anything producing a VPWH must produce a 2-tuple.
〈. . . , . . .〉 :: VPWH → . . .

and that anything producing an NP must produce a 1-tuple:
. . . :: NP → . . .

The string-composition functions cannot copy pieces of their arguments.

OK s t :: VP → s :: V t :: NP
OK t s himself :: S → s :: V t :: NP

Not OK t s t :: S → s :: V t :: NP
Essentially equivalent to linear context-free rewriting systems (LCFRSs).

(Seki et al. 1991, Weir 1988, Vijay-Shanker et al. 1987)
111 / 196

A different perspective on CFGs Concatenative and non-concatenative operations MCFGs Back to MGs

Some technical details

Each nonterminal has a rank n, and yields only n-tuples of strings.

So given this rule:
t2st1 :: Q → s :: NP 〈t1, t2〉 :: VPWH

we know that anything producing a VPWH must produce a 2-tuple.
〈. . . , . . .〉 :: VPWH → . . .

and that anything producing an NP must produce a 1-tuple:
. . . :: NP → . . .

The string-composition functions cannot copy pieces of their arguments.

OK s t :: VP → s :: V t :: NP
OK t s himself :: S → s :: V t :: NP

Not OK t s t :: S → s :: V t :: NP

Essentially equivalent to linear context-free rewriting systems (LCFRSs).

(Seki et al. 1991, Weir 1988, Vijay-Shanker et al. 1987)
111 / 196

A different perspective on CFGs Concatenative and non-concatenative operations MCFGs Back to MGs

Some technical details

Each nonterminal has a rank n, and yields only n-tuples of strings.

So given this rule:
t2st1 :: Q → s :: NP 〈t1, t2〉 :: VPWH

we know that anything producing a VPWH must produce a 2-tuple.
〈. . . , . . .〉 :: VPWH → . . .

and that anything producing an NP must produce a 1-tuple:
. . . :: NP → . . .

The string-composition functions cannot copy pieces of their arguments.

OK s t :: VP → s :: V t :: NP
OK t s himself :: S → s :: V t :: NP

Not OK t s t :: S → s :: V t :: NP
Essentially equivalent to linear context-free rewriting systems (LCFRSs).

(Seki et al. 1991, Weir 1988, Vijay-Shanker et al. 1987)
111 / 196

A different perspective on CFGs Concatenative and non-concatenative operations MCFGs Back to MGs

Beyond context-free

t1t2 :: S → 〈t1, t2〉 :: P
〈t1u1, t2u2〉 :: P → 〈t1, t2〉 :: P 〈u1, u2〉 :: E

〈ε, ε〉 :: P
〈a, a〉 :: E
〈b, b〉 :: E

{
ww | w ∈ {a,b}∗

}

aabaaaba :: S

〈aaba,aaba〉 :: P

〈a,a〉 :: E〈aab,aab〉 :: P

〈b,b〉 :: E〈aa,aa〉 :: P

〈a,a〉 :: E〈a,a〉 :: P

〈a,a〉 :: E〈ε, ε〉 :: P

Unlike in a CFG, we can ensure that the two “halves” are extended in the same
ways without concatenating them together.

112 / 196

A different perspective on CFGs Concatenative and non-concatenative operations MCFGs Back to MGs

For comparison

t1st2 :: S → t1 :: A s :: S t2 :: A
t1st2 :: S → t1 :: B s :: S t2 :: B

ε :: S
a :: A
b :: B

abaaaaba :: S

a :: Abaaaab :: S

b :: Baaaa :: S

a :: Aaa :: S

a :: Aε :: Sa :: A

a :: A

b :: B

a :: A

113 / 196

A different perspective on CFGs Concatenative and non-concatenative operations MCFGs Back to MGs

Outline

9 A different perspective on CFGs

10 Concatenative and non-concatenative operations

11 MCFGs

12 Back to MGs

114 / 196

A different perspective on CFGs Concatenative and non-concatenative operations MCFGs Back to MGs

Merge and move

=f α
f β

merge

β

α

<

=f α f β

merge

β α

>

+f α

-f β

move αβ

>

115 / 196

A different perspective on CFGs Concatenative and non-concatenative operations MCFGs Back to MGs

What matters in a (derived) tree

This tree:

x

-f -g

becomes a tuple of categorized strings:〈
s :: x , t :: -f , u :: -g

〉
0

or, equivalently, a tuple-of-strings, categorized by a tuple-of-categories:
〈s, t, u〉 :: 〈x, -f, -g〉0

(Michaelis 2001, Stabler and Keenan 2003)
116 / 196

A different perspective on CFGs Concatenative and non-concatenative operations MCFGs Back to MGs

Remember MG derivation trees?

t, {}

+k t, {-k}

will :: =v +k t v, {-k}

=subj v, {}

think :: =t =subj v t, {}

+k t, {-k}

will :: =v +k t v, {-k}

=subj v, {}

eat :: =obj =subj v cake :: obj

John :: subj -k

Mary :: subj -k

Slight change of notation (sorry):
internal node labels are now lists of
feature-lists.

We can tell that this tree represents
a well-formed derivation, by
checking the feature-manipulations
at each step.
How can we work out which string it
derives?

Build up a tree according to merge
and move rules, and read off
leaves of the tree.
But there’s a simpler way.

t

〈+k t, -k〉

will :: =v +k t 〈v, -k〉

=subj v

think :: =t =subj v t

〈+k t, -k〉

will :: =v +k t 〈v, -k〉

=subj v

eat :: =obj =subj v cake :: obj

John :: subj -k

Mary :: subj -k

117 / 196

A different perspective on CFGs Concatenative and non-concatenative operations MCFGs Back to MGs

Remember MG derivation trees?

t, {}

+k t, {-k}

will :: =v +k t v, {-k}

=subj v, {}

think :: =t =subj v t, {}

+k t, {-k}

will :: =v +k t v, {-k}

=subj v, {}

eat :: =obj =subj v cake :: obj

John :: subj -k

Mary :: subj -k

Slight change of notation (sorry):
internal node labels are now lists of
feature-lists.

We can tell that this tree represents
a well-formed derivation, by
checking the feature-manipulations
at each step.
How can we work out which string it
derives?

Build up a tree according to merge
and move rules, and read off
leaves of the tree.
But there’s a simpler way.

t

〈+k t, -k〉

will :: =v +k t 〈v, -k〉

=subj v

think :: =t =subj v t

〈+k t, -k〉

will :: =v +k t 〈v, -k〉

=subj v

eat :: =obj =subj v cake :: obj

John :: subj -k

Mary :: subj -k

117 / 196

A different perspective on CFGs Concatenative and non-concatenative operations MCFGs Back to MGs

Remember MG derivation trees?

Slight change of notation (sorry):
internal node labels are now lists of
feature-lists.

We can tell that this tree represents
a well-formed derivation, by
checking the feature-manipulations
at each step.
How can we work out which string it
derives?

Build up a tree according to merge
and move rules, and read off
leaves of the tree.
But there’s a simpler way.

t

〈+k t, -k〉

will :: =v +k t 〈v, -k〉

=subj v

think :: =t =subj v t

〈+k t, -k〉

will :: =v +k t 〈v, -k〉

=subj v

eat :: =obj =subj v cake :: obj

John :: subj -k

Mary :: subj -k

117 / 196

A different perspective on CFGs Concatenative and non-concatenative operations MCFGs Back to MGs

Remember MG derivation trees?

Slight change of notation (sorry):
internal node labels are now lists of
feature-lists.

We can tell that this tree represents
a well-formed derivation, by
checking the feature-manipulations
at each step.
How can we work out which string it
derives?

Build up a tree according to merge
and move rules, and read off
leaves of the tree.
But there’s a simpler way.

t

〈+k t, -k〉

will :: =v +k t 〈v, -k〉

=subj v

think :: =t =subj v t

〈+k t, -k〉

will :: =v +k t 〈v, -k〉

=subj v

eat :: =obj =subj v cake :: obj

John :: subj -k

Mary :: subj -k

117 / 196

A different perspective on CFGs Concatenative and non-concatenative operations MCFGs Back to MGs

Producing a string from a derivation tree

t

〈+k t, -k〉

.

What do we need to have computed at the 〈+k t, -k〉
node, in order to compute the final string

Mary will think John will eat cake

at the t node?

This tree would do:
<

>

<

>

>

>

<

cake ::eat ::

will ::

John ::

think ::

Mary :: -k

will :: +k t

But all we actually need to know is:
What’s the string corresponding to the
part that’s going to move to check -k?
What’s the string corresponding to the
leftovers?

These questions are answered by the tuple
〈will think John will eat cake, Mary〉

118 / 196

A different perspective on CFGs Concatenative and non-concatenative operations MCFGs Back to MGs

Producing a string from a derivation tree

t

〈+k t, -k〉

.

What do we need to have computed at the 〈+k t, -k〉
node, in order to compute the final string

Mary will think John will eat cake

at the t node?

This tree would do:
<

>

<

>

>

>

<

cake ::eat ::

will ::

John ::

think ::

Mary :: -k

will :: +k t

But all we actually need to know is:
What’s the string corresponding to the
part that’s going to move to check -k?
What’s the string corresponding to the
leftovers?

These questions are answered by the tuple
〈will think John will eat cake, Mary〉

118 / 196

A different perspective on CFGs Concatenative and non-concatenative operations MCFGs Back to MGs

Producing a string from a derivation tree

t

〈+k t, -k〉

will :: =v +k t 〈v, -k〉

.

What do we need to have computed at the 〈v, -k〉
node, in order to compute the desired tuple

〈will think John will eat cake, Mary〉

at the 〈+k t, -k〉 node?

This tree would do:
>

<

>

>

>

<

cake ::eat ::

will ::

John ::

think :: v

Mary :: -k
But all we actually need to know is:

What’s the string corresponding to the
part that’s going to move to check -k?
What’s the string corresponding to the
leftovers?

These questions are answered by the tuple
〈think John will eat cake, Mary〉

119 / 196

A different perspective on CFGs Concatenative and non-concatenative operations MCFGs Back to MGs

Producing a string from a derivation tree

t

〈+k t, -k〉

will :: =v +k t 〈v, -k〉

.

What do we need to have computed at the 〈v, -k〉
node, in order to compute the desired tuple

〈will think John will eat cake, Mary〉

at the 〈+k t, -k〉 node?

This tree would do:
>

<

>

>

>

<

cake ::eat ::

will ::

John ::

think :: v

Mary :: -k
But all we actually need to know is:

What’s the string corresponding to the
part that’s going to move to check -k?
What’s the string corresponding to the
leftovers?

These questions are answered by the tuple
〈think John will eat cake, Mary〉

119 / 196

A different perspective on CFGs Concatenative and non-concatenative operations MCFGs Back to MGs

Producing a string from a derivation tree

t

〈+k t, -k〉

will :: =v +k t 〈v, -k〉

=subj v

.

Mary :: subj -k

What do we need to have computed at the =subj v
node, in order to compute the desired tuple

〈think John will eat cake, Mary〉

at the 〈v, -k〉 node?

This tree would do:
<

>

>

>

<

cake ::eat ::

will ::

John ::

think :: =subj v
But all we actually need to know is:

What’s the string corresponding to the
entire tree? (The “leftovers after no
movement”.)

This question is answered by the string
think John will eat cake

120 / 196

A different perspective on CFGs Concatenative and non-concatenative operations MCFGs Back to MGs

Producing a string from a derivation tree

t

〈+k t, -k〉

will :: =v +k t 〈v, -k〉

=subj v

.

Mary :: subj -k

What do we need to have computed at the =subj v
node, in order to compute the desired tuple

〈think John will eat cake, Mary〉

at the 〈v, -k〉 node?

This tree would do:
<

>

>

>

<

cake ::eat ::

will ::

John ::

think :: =subj v
But all we actually need to know is:

What’s the string corresponding to the
entire tree? (The “leftovers after no
movement”.)

This question is answered by the string
think John will eat cake

120 / 196

A different perspective on CFGs Concatenative and non-concatenative operations MCFGs Back to MGs

What matters in a (derived) tree

This tree:

x

-f -g

becomes a tuple of categorized strings:〈
s :: x , t :: -f , u :: -g

〉
0

or, equivalently, a tuple-of-strings, categorized by a tuple-of-categories:
〈s, t, u〉 :: 〈x, -f, -g〉0

(Michaelis 2001, Stabler and Keenan 2003)
121 / 196

A different perspective on CFGs Concatenative and non-concatenative operations MCFGs Back to MGs

MCFG rules
t

〈+k t, -k〉

will :: =v +k t 〈v, -k〉

=subj v

.

Mary :: subj -k

t2t1 :: t → 〈t1, t2〉 :: 〈+k t, -k〉
Mary will think John will eat cake :: t → 〈will think John will eat cake, Mary〉 :: 〈+k t, -k〉

〈st1, t2〉 :: 〈+k t, -k〉 → s :: =v +k t 〈t1, t2〉 :: 〈v, -k〉
〈will think John will eat cake, Mary〉 :: 〈+k t, -k〉 → will :: =v +k t 〈think John will eat cake, Mary〉 :: 〈v, -k〉

〈s, t〉 :: 〈v, -k〉 → s :: =subj v t :: subj -k

〈think John will eat cake, Mary〉 :: 〈v, -k〉 → think John will eat cake :: =subj v Mary :: subj -k

122 / 196

A different perspective on CFGs Concatenative and non-concatenative operations MCFGs Back to MGs

One slightly annoying wrinkle

We know that this is a valid derivational step:
α

=fα f

What is the corresponding MCFG rule?

Selected thing on the right?

st :: α → s :: =fα t :: f

<

John ::with :: p

p

with :: =d p John :: d

Selected thing on the left?

ts :: α → s :: =fα t :: f

>

<

cake ::eat :: v

John ::

v

<

cake ::eat :: =d v

=d v John :: d

123 / 196

A different perspective on CFGs Concatenative and non-concatenative operations MCFGs Back to MGs

One slightly annoying wrinkle

We know that this is a valid derivational step:
α

=fα f

What is the corresponding MCFG rule?

Selected thing on the right?

st :: α → s :: =fα t :: f

<

John ::with :: p

p

with :: =d p John :: d

Selected thing on the left?

ts :: α → s :: =fα t :: f

>

<

cake ::eat :: v

John ::

v

<

cake ::eat :: =d v

=d v John :: d

123 / 196

A different perspective on CFGs Concatenative and non-concatenative operations MCFGs Back to MGs

One slightly annoying wrinkle

We know that this is a valid derivational step:
α

=fα f

What is the corresponding MCFG rule?

Selected thing on the right?

st :: α → s :: =fα t :: f

<

John ::with :: p

p

with :: =d p John :: d

Selected thing on the left?

ts :: α → s :: =fα t :: f

>

<

cake ::eat :: v

John ::

v

<

cake ::eat :: =d v

=d v John :: d

123 / 196

A different perspective on CFGs Concatenative and non-concatenative operations MCFGs Back to MGs

One slightly annoying wrinkle

Each type needs to record not only the unchecked features, but also whether the
expression is lexical.

I’ll write lexical types as 〈. . .〉1 and non-lexical types as 〈. . .〉0.

So types of the form 〈=fα〉1 act slightly differently from those of the form 〈=fα〉0.

st :: 〈α〉0 → s :: 〈=fα〉1 t :: 〈f〉n
with John :: 〈p〉0 → with :: 〈=d p〉1 John :: 〈d〉1

ts :: 〈α〉0 → s :: 〈=fα〉0 t :: 〈f〉n
John eat cake :: 〈v〉0 → eat cake :: 〈=d v〉0 John :: 〈d〉1

124 / 196

A different perspective on CFGs Concatenative and non-concatenative operations MCFGs Back to MGs

Context-free structure

Schemas for merge steps:

〈γ, α1, . . . , αj , β1, . . . , βk〉 → 〈=fγ, α1, . . . , αj〉 〈f, β1, . . . , βk〉
〈γ, α1, . . . , αj , δ, β1, . . . , βk〉 → 〈=fγ, α1, . . . , αj〉 〈fδ, β1, . . . , βk〉

Schemas for move steps:

〈γ, α1, . . . , αi−1, αi+1, . . . , αk〉 → 〈+fγ, α1, . . . , αi−1, -f, αi+1, . . . , αk〉
〈γ, α1, . . . , αi−1, δ, αi+1, . . . , αk〉 → 〈+fγ, α1, . . . , αi−1, -fδ, αi+1, . . . , αk〉

move steps change something without combining it with anything
Compare with unary CFG rules, or type-raising in CCG, or . . .

125 / 196

A different perspective on CFGs Concatenative and non-concatenative operations MCFGs Back to MGs

Context-free structure

Schemas for merge steps:

〈γ, α1, . . . , αj , β1, . . . , βk〉 → 〈=fγ, α1, . . . , αj〉 〈f, β1, . . . , βk〉
〈γ, α1, . . . , αj , δ, β1, . . . , βk〉 → 〈=fγ, α1, . . . , αj〉 〈fδ, β1, . . . , βk〉

Schemas for move steps:

〈γ, α1, . . . , αi−1, αi+1, . . . , αk〉 → 〈+fγ, α1, . . . , αi−1, -f, αi+1, . . . , αk〉
〈γ, α1, . . . , αi−1, δ, αi+1, . . . , αk〉 → 〈+fγ, α1, . . . , αi−1, -fδ, αi+1, . . . , αk〉

move steps change something without combining it with anything
Compare with unary CFG rules, or type-raising in CCG, or . . .

125 / 196

A different perspective on CFGs Concatenative and non-concatenative operations MCFGs Back to MGs

Three schemas for merge rules:

〈st, t1, . . . , tk〉 :: 〈γ, α1, . . . , αk〉0 →
s :: 〈=fγ〉1 〈t, t1, . . . , tk〉 :: 〈f, α1, . . . , αk〉n

〈ts, s1, . . . , sj , t1, . . . , tk〉 :: 〈γ, α1, . . . , αj , β1, . . . , βk〉0 →
〈s, s1, . . . , sj〉 :: 〈=fγ, α1, . . . , αj〉0 〈t, t1, . . . , tk〉 :: 〈f, β1, . . . , βk〉n

〈s, s1, . . . , sj , t, t1, . . . , tk〉 :: 〈γ, α1, . . . , αj , δ, β1, . . . , βk〉0 →
〈s, s1, . . . , sj〉 :: 〈=fγ, α1, . . . , αj〉n 〈t, t1, . . . , tk〉 :: 〈fδ, β1, . . . , βk〉n′

Two schemas for merge rules:

〈sis, s1, . . . , si−1, si+1, . . . , sk〉 :: 〈γ, α1, . . . , αi−1, αi+1, . . . , αk〉0 →
〈s, s1, . . . , si , . . . , sk〉 :: 〈+fγ, α1, . . . , αi−1, -f, αi+1, . . . , αk〉0

〈s, s1, . . . , si , . . . , sk〉 :: 〈γ, α1, . . . , αi−1, δ, αi+1, . . . , αk〉0 →
〈s, s1, . . . , si , . . . , sk〉 :: 〈+fγ, α1, . . . , αi−1, -fδ, αi+1, . . . , αk〉0

126 / 196

References I

Billot, S. and Lang, B. (1989). The structure of shared forests in ambiguous parsing. In Proceedings of
the 1989 Meeting of the Association of Computational Linguistics.

Chomsky, N. (1965). Aspects of the Theory of Syntax. MIT Press, Cambridge, MA.

Chomsky, N. (1980). Rules and Representations. Columbia University Press, New York.

Ferreira, F. (2005). Psycholinguistics, formal grammars, and cognitive science. The Linguistic Review,
22:365–380.

Gärtner, H.-M. and Michaelis, J. (2010). On the Treatment of Multiple-Wh Interrogatives in
Minimalist Grammars. In Hanneforth, T. and Fanselow, G., editors, Language and Logos, pages
339–366. Akademie Verlag, Berlin.

Gibson, E. and Wexler, K. (1994). Triggers. Linguistic Inquiry, 25:407–454.

Hale, J. (2006). Uncertainty about the rest of the sentence. Cognitive Science, 30:643–Âŋ672.

Hale, J. T. (2001). A probabilistic earley parser as a psycholinguistic model. In Proceedings of the
Second Meeting of the North American Chapter of the Association for Computational Linguistics.

Hunter, T. (2011). Insertion Minimalist Grammars: Eliminating redundancies between merge and
move. In Kanazawa, M., Kornai, A., Kracht, M., and Seki, H., editors, The Mathematics of
Language (MOL 12 Proceedings), volume 6878 of LNCS, pages 90–107, Berlin Heidelberg. Springer.

Hunter, T. and Dyer, C. (2013). Distributions on minimalist grammar derivations. In Proceedings of
the 13th Meeting on the Mathematics of Language.

Koopman, H. and Szabolcsi, A. (2000). Verbal Complexes. MIT Press, Cambridge, MA.

References II

Lang, B. (1988). Parsing incomplete sentences. In Proceedings of the 12th International Conference on
Computational Linguistics, pages 365–371.

Levy, R. (2008). Expectation-based syntactic comprehension. Cognition, 106(3):1126–1177.

Michaelis, J. (2001). Derivational minimalism is mildly context-sensitive. In Moortgat, M., editor,
Logical Aspects of Computational Linguistics, volume 2014 of LNCS, pages 179–198. Springer,
Berlin Heidelberg.

Miller, G. A. and Chomsky, N. (1963). Finitary models of language users. In Luce, R. D., Bush, R. R.,
and Galanter, E., editors, Handbook of Mathematical Psychology, volume 2. Wiley and Sons, New
York.

Morrill, G. (1994). Type Logical Grammar: Categorial Logic of Signs. Kluwer, Dordrecht.

Nederhof, M. J. and Satta, G. (2008). Computing partition functions of pcfgs. Research on Language
and Computation, 6(2):139–162.

Seki, H., Matsumara, T., Fujii, M., and Kasami, T. (1991). On multiple context-free grammars.
Theoretical Computer Science, 88:191–229.

Stabler, E. P. (2006). Sidewards without copying. In Wintner, S., editor, Proceedings of The 11th
Conference on Formal Grammar, pages 157–170, Stanford, CA. CSLI Publications.

Stabler, E. P. (2011). Computational perspectives on minimalism. In Boeckx, C., editor, The Oxford
Handbook of Linguistic Minimalism. Oxford University Press, Oxford.

Stabler, E. P. and Keenan, E. L. (2003). Structural similarity within and among languages. Theoretical
Computer Science, 293:345–363.

References III

Vijay-Shanker, K., Weir, D. J., and Joshi, A. K. (1987). Characterizing structural descriptions produced
by various grammatical formalisms. In Proceedings of the 25th Meeting of the Association for
Computational Linguistics, pages 104–111.

Weir, D. (1988). Characterizing mildly context-sensitive grammar formalisms. PhD thesis, University of
Pennsylvania.

Yngve, V. H. (1960). A model and an hypothesis for language structure. In Proceedings of the
American Philosophical Society, volume 104, pages 444–466.

