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A different perspective on CFGs Concatenative and non-concatenative operations MCFGs Back to MGs

Where we’re up to

We’ve seen:

MGs with operations defined that manipulated trees
that the structure that “really matters” (e.g. for recursion) can be boiled
down to funny-looking “derivation trees” (with things like t, {-k} at the
non-leaf nodes)

Now:

A way to think of how these derivation trees relate to surface strings (without
going via trees)
In some ways not totally necessary for the rest of the course, but helpful

Later:

Adding probabilities to MGs: in a way that sort of works, and does some good
stuff, but doesn’t do everything we’d want
Adding probabilities to MGs: in an even better way
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Trees

S

VP

NP

N
cake

V
likes

NP

N
boy

D
the

the boy likes cake :: S

likes cake :: VP

cake :: NP

cake :: N

likes :: V

the boy :: NP

boy :: Nthe :: D

How to think of a tree:

less as a picture of a string
more as a graphical representation of how a string was constructed, with the
string “at” the top node

102 / 196



A different perspective on CFGs Concatenative and non-concatenative operations MCFGs Back to MGs

Trees

S

VP

NP

N
cake

V
likes

NP

N
boy

D
the

the boy likes cake :: S

likes cake :: VP

cake :: NP

cake :: N

likes :: V

the boy :: NP

boy :: Nthe :: D

How to think of a tree:

less as a picture of a string
more as a graphical representation of how a string was constructed, with the
string “at” the top node

102 / 196



A different perspective on CFGs Concatenative and non-concatenative operations MCFGs Back to MGs

Two sides of a CFG rule

A rule like ‘S → NP VP’ says two things:

What combines with what:
An NP and a VP can combine to form an S

How to produce a string of the new category:
Put the NP-string to the left of the VP-string

More explicitly:
st :: S → s :: NP t :: VP
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Example: X-bar theory

Japanese
XP → Spec X′
X′ → Comp X

English
XP → Spec X′
X′ → X Comp

Japanese
st :: XP → s :: Spec t :: X′
st :: X′ → s :: Comp t :: X

English
st :: XP → s :: Spec t :: X′
ts :: X′ → s :: Comp t :: X

John-ga Mary-o mita :: VP

Mary-o mita :: V′

mita :: VMary-o :: Comp

John-ga :: Spec

John saw Mary :: VP

saw Mary :: V′

saw :: VMary :: Comp

John :: Spec
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Concatenative and non-concatenative operations

Concatenative morphology:
play + ed  played
play + ing  playing
play + s  plays

Non-concatenative morphology:
(k,t,b) + (i,aa)  kitaab (“book”)
(k,t,b) + (aa,i)  kaatib (“writer”)
(k,t,b) + (ma,uu)  maktuub (“written”)
(k,t,b) + (a,i,a)  katiba (“document”)

Concatenative syntax:
plays + tennis  plays tennis
plays + soccer  plays soccer
John + plays soccer  John plays soccer
Mary + plays soccer  Mary plays soccer

Non-concatenative syntax:
seems + (John, to be tall)  John seems to be tall
seems + (Mary, to be intelligent)  Mary seems to be intelligent
did + (John see, who)  who did John see
did + (Mary meet, who)  who did Mary meet
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Non-concatenative morphology

kitaab :: A

〈i,aa〉 :: C〈k,t,b〉 :: B

kaatib :: A

〈aa,i〉 :: C〈k,t,b〉 :: B

kutub :: A

〈u,u〉 :: C〈k,t,b〉 :: B

stuvw :: A → 〈s, u,w〉 :: B 〈t, v〉 :: C

gespielt :: E

〈ge,t〉 :: Dspiel :: A

gekauft :: E

〈ge,t〉 :: Dkauf :: A

gemacht :: E

〈ge,t〉 :: Dmach :: A

stu :: E → t :: A 〈s, u〉 :: D
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Non-concatenative morphology

stuvw :: A → 〈s, u,w〉 :: B 〈t, v〉 :: C
stu :: E → t :: A 〈s, u〉 :: D

〈ts, u〉 :: D → t :: F 〈s, u〉 :: D

gekitaabt :: E

〈ge,t〉 :: Dkitaab :: A

〈i,aa〉 :: C〈k,t,b〉 :: B

ausgekitaabt :: E

〈ausge,t〉 :: D

〈ge,t〉 :: Daus :: F

kitaab :: A

〈i,aa〉 :: C〈k,t,b〉 :: B

If our goal is to characterize the array of well-formed/derivable objects — not to
pronounce them — then all we care about is “what’s built out of what”:

A → B C
E → A D
D → F D
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Multiple Context-Free Grammars (MCFGs)

st :: S → s :: NP t :: VP

An MCFG generalises to allow yields to be tuples of strings.
t2st1 :: Q → s :: NP 〈t1, t2〉 :: VPWH

This rule says two things:

We can combine an NP with a VPWH to make a Q.
The yield of the Q is t2st1,
where s is the yield of the NP and 〈t1, t2〉 is the yield of the VPWH.

which girl the boy says is tall :: Q →
the boy :: NP 〈says is tall,which girl〉 :: VPWH
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Some technical details

Each nonterminal has a rank n, and yields only n-tuples of strings.

So given this rule:
t2st1 :: Q → s :: NP 〈t1, t2〉 :: VPWH

we know that anything producing a VPWH must produce a 2-tuple.
〈. . . , . . .〉 :: VPWH → . . .

and that anything producing an NP must produce a 1-tuple:
. . . :: NP → . . .

The string-composition functions cannot copy pieces of their arguments.

OK s t :: VP → s :: V t :: NP
OK t s himself :: S → s :: V t :: NP

Not OK t s t :: S → s :: V t :: NP
Essentially equivalent to linear context-free rewriting systems (LCFRSs).

(Seki et al. 1991, Weir 1988, Vijay-Shanker et al. 1987)
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Beyond context-free

t1t2 :: S → 〈t1, t2〉 :: P
〈t1u1, t2u2〉 :: P → 〈t1, t2〉 :: P 〈u1, u2〉 :: E

〈ε, ε〉 :: P
〈a, a〉 :: E
〈b, b〉 :: E

{
ww | w ∈ {a,b}∗

}

aabaaaba :: S

〈aaba,aaba〉 :: P

〈a,a〉 :: E〈aab,aab〉 :: P

〈b,b〉 :: E〈aa,aa〉 :: P

〈a,a〉 :: E〈a,a〉 :: P

〈a,a〉 :: E〈ε, ε〉 :: P

Unlike in a CFG, we can ensure that the two “halves” are extended in the same
ways without concatenating them together.
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For comparison

t1st2 :: S → t1 :: A s :: S t2 :: A
t1st2 :: S → t1 :: B s :: S t2 :: B

ε :: S
a :: A
b :: B

abaaaaba :: S

a :: Abaaaab :: S

b :: Baaaa :: S

a :: Aaa :: S

a :: Aε :: Sa :: A

a :: A

b :: B

a :: A
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Merge and move

=f α
f β

merge

β

α

<

=f α f β

merge

β α

>

+f α

-f β

move αβ

>
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What matters in a (derived) tree

This tree:

x

-f -g

becomes a tuple of categorized strings:〈
s :: x , t :: -f , u :: -g

〉
0

or, equivalently, a tuple-of-strings, categorized by a tuple-of-categories:
〈s, t, u〉 :: 〈x, -f, -g〉0

(Michaelis 2001, Stabler and Keenan 2003)
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Remember MG derivation trees?

t, {}

+k t, {-k}

will :: =v +k t v, {-k}

=subj v, {}

think :: =t =subj v t, {}

+k t, {-k}

will :: =v +k t v, {-k}

=subj v, {}

eat :: =obj =subj v cake :: obj

John :: subj -k

Mary :: subj -k

Slight change of notation (sorry):
internal node labels are now lists of
feature-lists.

We can tell that this tree represents
a well-formed derivation, by
checking the feature-manipulations
at each step.
How can we work out which string it
derives?

Build up a tree according to merge
and move rules, and read off
leaves of the tree.
But there’s a simpler way.

t

〈+k t, -k〉

will :: =v +k t 〈v, -k〉

=subj v

think :: =t =subj v t

〈+k t, -k〉

will :: =v +k t 〈v, -k〉

=subj v

eat :: =obj =subj v cake :: obj

John :: subj -k

Mary :: subj -k
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Producing a string from a derivation tree

t

〈+k t, -k〉

. . . . . .

What do we need to have computed at the 〈+k t, -k〉
node, in order to compute the final string

Mary will think John will eat cake

at the t node?

This tree would do:
<

>

<

>

>

>

<

cake ::eat ::

will ::

John ::

think ::

Mary :: -k

will :: +k t

But all we actually need to know is:
What’s the string corresponding to the
part that’s going to move to check -k?
What’s the string corresponding to the
leftovers?

These questions are answered by the tuple
〈will think John will eat cake, Mary〉
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Producing a string from a derivation tree

t

〈+k t, -k〉

will :: =v +k t 〈v, -k〉

. . . . . .

What do we need to have computed at the 〈v, -k〉
node, in order to compute the desired tuple

〈will think John will eat cake, Mary〉

at the 〈+k t, -k〉 node?

This tree would do:
>

<

>

>

>

<

cake ::eat ::

will ::

John ::

think :: v

Mary :: -k
But all we actually need to know is:

What’s the string corresponding to the
part that’s going to move to check -k?
What’s the string corresponding to the
leftovers?

These questions are answered by the tuple
〈think John will eat cake, Mary〉
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What’s the string corresponding to the
part that’s going to move to check -k?
What’s the string corresponding to the
leftovers?

These questions are answered by the tuple
〈think John will eat cake, Mary〉
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movement”.)
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What matters in a (derived) tree

This tree:

x

-f -g

becomes a tuple of categorized strings:〈
s :: x , t :: -f , u :: -g

〉
0

or, equivalently, a tuple-of-strings, categorized by a tuple-of-categories:
〈s, t, u〉 :: 〈x, -f, -g〉0

(Michaelis 2001, Stabler and Keenan 2003)
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MCFG rules
t

〈+k t, -k〉

will :: =v +k t 〈v, -k〉

=subj v

. . . . . .

Mary :: subj -k

t2t1 :: t → 〈t1, t2〉 :: 〈+k t, -k〉
Mary will think John will eat cake :: t → 〈will think John will eat cake, Mary〉 :: 〈+k t, -k〉

〈st1, t2〉 :: 〈+k t, -k〉 → s :: =v +k t 〈t1, t2〉 :: 〈v, -k〉
〈will think John will eat cake, Mary〉 :: 〈+k t, -k〉 → will :: =v +k t 〈think John will eat cake, Mary〉 :: 〈v, -k〉

〈s, t〉 :: 〈v, -k〉 → s :: =subj v t :: subj -k

〈think John will eat cake, Mary〉 :: 〈v, -k〉 → think John will eat cake :: =subj v Mary :: subj -k
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One slightly annoying wrinkle

We know that this is a valid derivational step:
α

=fα f

What is the corresponding MCFG rule?

Selected thing on the right?

st :: α → s :: =fα t :: f

<

John ::with :: p

p

with :: =d p John :: d

Selected thing on the left?

ts :: α → s :: =fα t :: f

>

<

cake ::eat :: v

John ::

v

<

cake ::eat :: =d v

=d v John :: d
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One slightly annoying wrinkle

Each type needs to record not only the unchecked features, but also whether the
expression is lexical.

I’ll write lexical types as 〈. . .〉1 and non-lexical types as 〈. . .〉0.

So types of the form 〈=fα〉1 act slightly differently from those of the form 〈=fα〉0.

st :: 〈α〉0 → s :: 〈=fα〉1 t :: 〈f〉n
with John :: 〈p〉0 → with :: 〈=d p〉1 John :: 〈d〉1

ts :: 〈α〉0 → s :: 〈=fα〉0 t :: 〈f〉n
John eat cake :: 〈v〉0 → eat cake :: 〈=d v〉0 John :: 〈d〉1
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Context-free structure

Schemas for merge steps:

〈γ, α1, . . . , αj , β1, . . . , βk〉 → 〈=fγ, α1, . . . , αj〉 〈f, β1, . . . , βk〉
〈γ, α1, . . . , αj , δ, β1, . . . , βk〉 → 〈=fγ, α1, . . . , αj〉 〈fδ, β1, . . . , βk〉

Schemas for move steps:

〈γ, α1, . . . , αi−1, αi+1, . . . , αk〉 → 〈+fγ, α1, . . . , αi−1, -f, αi+1, . . . , αk〉
〈γ, α1, . . . , αi−1, δ, αi+1, . . . , αk〉 → 〈+fγ, α1, . . . , αi−1, -fδ, αi+1, . . . , αk〉

move steps change something without combining it with anything
Compare with unary CFG rules, or type-raising in CCG, or . . .
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Three schemas for merge rules:

〈st, t1, . . . , tk〉 :: 〈γ, α1, . . . , αk〉0 →
s :: 〈=fγ〉1 〈t, t1, . . . , tk〉 :: 〈f, α1, . . . , αk〉n

〈ts, s1, . . . , sj , t1, . . . , tk〉 :: 〈γ, α1, . . . , αj , β1, . . . , βk〉0 →
〈s, s1, . . . , sj〉 :: 〈=fγ, α1, . . . , αj〉0 〈t, t1, . . . , tk〉 :: 〈f, β1, . . . , βk〉n

〈s, s1, . . . , sj , t, t1, . . . , tk〉 :: 〈γ, α1, . . . , αj , δ, β1, . . . , βk〉0 →
〈s, s1, . . . , sj〉 :: 〈=fγ, α1, . . . , αj〉n 〈t, t1, . . . , tk〉 :: 〈fδ, β1, . . . , βk〉n′

Two schemas for merge rules:

〈sis, s1, . . . , si−1, si+1, . . . , sk〉 :: 〈γ, α1, . . . , αi−1, αi+1, . . . , αk〉0 →
〈s, s1, . . . , si , . . . , sk〉 :: 〈+fγ, α1, . . . , αi−1, -f, αi+1, . . . , αk〉0

〈s, s1, . . . , si , . . . , sk〉 :: 〈γ, α1, . . . , αi−1, δ, αi+1, . . . , αk〉0 →
〈s, s1, . . . , si , . . . , sk〉 :: 〈+fγ, α1, . . . , αi−1, -fδ, αi+1, . . . , αk〉0
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