
Sharpening the empirical claims of generative syntax
through formalization

Tim Hunter

University of Minnesota, Twin Cities

NASSLLI, June 2014



Part 1: Grammars and cognitive hypotheses
What is a grammar?
What can grammars do?
Concrete illustration of a target: Surprisal

Parts 2–4: Assembling the pieces
Minimalist Grammars (MGs)
MGs and MCFGs
Probabilities on MGs

Part 5: Learning and wrap-up
Something slightly different: Learning model
Recap and open questions



Sharpening the empirical claims of generative syntax
through formalization

Tim Hunter — NASSLLI, June 2014

Part 2

Minimalist Grammars



Notation and Basics Example fragment Recursion Derivation trees

Outline

5 Notation and Basics

6 Example fragment

7 Recursion

8 Derivation trees

54 / 196



Notation and Basics Example fragment Recursion Derivation trees

Outline

5 Notation and Basics

6 Example fragment

7 Recursion

8 Derivation trees

55 / 196



Notation and Basics Example fragment Recursion Derivation trees

Wait a minute!

“I thought the whole point was deciding between candidate sets of primitive
derivational operations! Isn’t it begging the question to set everything in stone at
the beginning like this?”

We’re not setting this in stone — we will look at alternatives.
But we need a concrete starting point so that we can make the differences
concrete.
What’s coming up is meant as a relatively neutral/“mainstream” starting
point.

56 / 196



Notation and Basics Example fragment Recursion Derivation trees

Wait a minute!

“I thought the whole point was deciding between candidate sets of primitive
derivational operations! Isn’t it begging the question to set everything in stone at
the beginning like this?”

We’re not setting this in stone — we will look at alternatives.
But we need a concrete starting point so that we can make the differences
concrete.
What’s coming up is meant as a relatively neutral/“mainstream” starting
point.

56 / 196



Notation and Basics Example fragment Recursion Derivation trees

Minimalist Grammars

Defining a grammar in the MG formalism is defining a set Lex of lexical items

A lexical item is a string with a sequence of features.
e.g. like :: =d =d v, mary :: d, who :: d -wh
Generates the closure of the Lex ⊂ Expr under two derivational operations:

merge : Expr × Expr partial−−−−→ Expr
move : Expr partial−−−−→ Expr

Each feature encodes a requirement that must be met by applying a particular
derivational operation.

merge checks =f and f
move checks +f and -f

A derived expression is complete when it has only a single feature remaining
unchecked.

57 / 196



Notation and Basics Example fragment Recursion Derivation trees

Merge and move

=f α
f β

merge

β

α

<

=f α f β

merge

β α

>

+f α

-f β

move αβ

>

58 / 196



Notation and Basics Example fragment Recursion Derivation trees

Examples

merge (eat :: =d v, it :: d) =
<

eat :: v it ::

merge (the :: =n d, book :: n) =

<

the :: d book ::

merge

(
eat :: =d v,

<

the :: d book ::

)
=

<

eat :: v <

the :: book ::

merge (which :: =n d -wh, book :: n) =

<

which :: d -wh book ::

merge

(
eat :: =d v,

<

which :: d -wh book ::

)
=

<

eat :: v <

which :: -wh book ::

59 / 196



Notation and Basics Example fragment Recursion Derivation trees

Examples

merge

will :: =v =d t,

<

eat :: v <

which :: -wh book ::

 =

<

will :: =d t <

eat :: <

which :: -wh book ::

merge


<

will :: =d t <

eat :: <

which :: -wh book ::

, John :: d

 =

>

John :: <

will :: t <

eat :: <

which :: -wh book ::

60 / 196



Notation and Basics Example fragment Recursion Derivation trees

Examples

merge

ε :: =t +wh c,

>

John :: <

will :: t <

eat :: <

which :: -wh book ::

 =

<

ε :: +wh c >

John :: <

will :: <

eat :: <

which :: -wh book ::

move



<

ε :: +wh c >

John :: <

will :: <

eat :: <

which :: -wh book ::


=

>

<

which :: book ::

<

ε :: c >

John :: <

will :: <

eat ::

61 / 196



Notation and Basics Example fragment Recursion Derivation trees

Merge and move

=f α
f β

merge

β

α

<

=f α f β

merge

β α

>

+f α

-f β

move αβ

>

62 / 196



Notation and Basics Example fragment Recursion Derivation trees

Definitions

merge
(
e1[=f α], e2[f β]

)
=

{
[< e1[α] e2[β]] if e1[=f α] ∈ Lex
[> e2[β] e1[α]] otherwise

move
(
e1[+f α]

)
= [> e2[β] e′1[α]]
where e2[-f β] is a unique subtree of e1[+f α]
and e′1 is like e1 but with e2[-f β] replaced by an empty leaf node

63 / 196



Notation and Basics Example fragment Recursion Derivation trees

Shortest Move Constraint

How do we know which subtree should be displaced when we apply move?

By stipulation, there can only ever be one candidate. This is the Shortest Move
Constraint (SMC).

move



<

ε :: +wh c >

who :: -wh <

ate :: what :: -wh


is undefined

Q: Multiple wh-movement?
A: Clustering!

64 / 196



Notation and Basics Example fragment Recursion Derivation trees

Shortest Move Constraint

How do we know which subtree should be displaced when we apply move?

By stipulation, there can only ever be one candidate. This is the Shortest Move
Constraint (SMC).

move



<

ε :: +wh c >

who :: -wh <

ate :: what :: -wh


is undefined

Q: Multiple wh-movement?
A: Clustering!

64 / 196



Notation and Basics Example fragment Recursion Derivation trees

(Gärtner and Michaelis 2010) 65 / 196



Notation and Basics Example fragment Recursion Derivation trees

Notation

=d v or =dp vp?

Categorial grammar:

Primitive symbols for “complete” things, e.g. S, NP
Derived symbols for “incomplete” things, e.g. S\NP
Lexical category can specify “what’s missing”

Traditional X-bar theory:

Primitive symbols for “incomplete” things, e.g. V, T
Derived symbols for “complete” things, e.g. VP, TP (= V′′, T′′)
Separate subcategorization info specifies “what’s missing”

MGs:

Primitive symbols for “complete” things, like CG
So t means “a complete projection of T”, not “a T head”

66 / 196



Notation and Basics Example fragment Recursion Derivation trees

Notation comparison

T
will

VP

V
eat

DP

D
which
-wh

N
book

will :: =v =d t

<

eat :: v <

which :: -wh book ::

Conventional notation MG notation
‘eat which book’ is a VP VP label on root v on ‘eat’
‘which book’ must move -wh on ‘which’ -wh on ‘which’
‘will’ combines with a VP implicit =v on ‘will’

67 / 196



Notation and Basics Example fragment Recursion Derivation trees

Notation comparison

T
will

VP

V
eat

DP

D
which
-wh

N
book

will :: =v =d t

<

eat :: v <

which :: -wh book ::

Conventional notation MG notation
‘eat which book’ is a VP VP label on root v on ‘eat’
‘which book’ must move -wh on ‘which’ -wh on ‘which’
‘will’ combines with a VP implicit =v on ‘will’

67 / 196



Notation and Basics Example fragment Recursion Derivation trees

Outline

5 Notation and Basics

6 Example fragment

7 Recursion

8 Derivation trees

68 / 196



Notation and Basics Example fragment Recursion Derivation trees

A Minimalist Grammar

cake :: d what :: d -wh
John :: d -k who :: d -k -wh
eat :: =d =d v ε :: =t +wh c
will :: =v +k t ε :: =t c

69 / 196



Notation and Basics Example fragment Recursion Derivation trees

A Minimalist Grammar

cake :: d what :: d -wh
John :: d -k who :: d -k -wh
eat :: =d =d v ε :: =t +wh c
will :: =v +k t ε :: =t c

>

<

cake ::eat :: v

John :: -k

<

>

<

cake ::eat ::

John :: -k

will :: +k t

>

<

>

<

cake ::eat ::

will :: t

John ::

69 / 196



Notation and Basics Example fragment Recursion Derivation trees

A Minimalist Grammar

cake :: d what :: d -wh
John :: d -k who :: d -k -wh
eat :: =d =d v ε :: =t +wh c
will :: =v +k t ε :: =t c

>

<

>

<

what :: -wheat ::

will :: t

John ::

<

>

<

>

<

what :: -wheat ::

will ::

John ::

ε :: +wh c

>

<

>

<

>

<

eat ::

will ::

John ::

ε :: c

what ::

69 / 196



Notation and Basics Example fragment Recursion Derivation trees

A Minimalist Grammar

cake :: d what :: d -wh
John :: d -k who :: d -k -wh
eat :: =d =d v ε :: =t +wh c
will :: =v +k t ε :: =t c

<

>

<

cake ::eat ::

who :: -k -wh

will :: +k t

>

<

>

<

cake ::eat ::

will :: t

who :: -wh

>

<

>

<

>

<

cake ::eat ::

will ::

ε :: c

who ::

69 / 196



Notation and Basics Example fragment Recursion Derivation trees

A Minimalist Grammar . . . which overgenerates

cake :: d what :: d -wh
John :: d -k who :: d -k -wh
eat :: =d =d v ε :: =t +wh c
will :: =v +k t ε :: =t c

70 / 196



Notation and Basics Example fragment Recursion Derivation trees

A Minimalist Grammar . . . which overgenerates

cake :: d what :: d -wh
John :: d -k who :: d -k -wh
eat :: =d =d v ε :: =t +wh c
will :: =v +k t ε :: =t c

>

<

John :: -keat :: v

cake ::

<

>

<

John :: -keat ::

cake ::

will :: +k t

>

<

>

<

eat ::

cake ::

will :: t

John ::

70 / 196



Notation and Basics Example fragment Recursion Derivation trees

A Minimalist Grammar . . . which overgenerates

cake :: d what :: d -wh
John :: d -k who :: d -k -wh
eat :: =d =d v ε :: =t +wh c
will :: =v +k t ε :: =t c

<

>

<

who :: -k -wheat ::

cake ::

will :: +k t

>

<

>

<

>

<

eat ::

cake ::

will ::

ε :: c

who ::

70 / 196



Notation and Basics Example fragment Recursion Derivation trees

A Minimalist Grammar . . . which overgenerates

cake :: d what :: d -wh
John :: d -k who :: d -k -wh
eat :: =d =d v ε :: =t +wh c
will :: =v +k t ε :: =t c

<

>

<

John :: -keat ::

what :: -wh

will :: +k t

>

<

>

<

>

<

eat ::

will ::

John ::

ε :: c

what ::

70 / 196



Notation and Basics Example fragment Recursion Derivation trees

A Minimalist Grammar . . . which overgenerates

cake :: d what :: d -wh
John :: d -k who :: d -k -wh
eat :: =d =d v ε :: =t +wh c
will :: =v +k t ε :: =t c

John will eat cake John will cake eat
what John will eat what John will eat
who will eat cake who will cake eat

S → NP VP VP → V NP
NP → John VP → runs
NP → Mary VP → walks

V → loves

John runs Mary runs
John walks Mary walks
John loves John Mary loves John
John loves Mary Mary loves Mary

71 / 196



Notation and Basics Example fragment Recursion Derivation trees

A Minimalist Grammar . . . which overgenerates

cake :: d what :: d -wh
John :: d -k who :: d -k -wh
eat :: =d =d v ε :: =t +wh c
will :: =v +k t ε :: =t c

John will eat cake John will cake eat
what John will eat what John will eat
who will eat cake who will cake eat

S → NP VP VP → V NP
NP → John VP → runs
NP → Mary VP → walks

V → loves

John runs Mary runs
John walks Mary walks
John loves John Mary loves John
John loves Mary Mary loves Mary

71 / 196



Notation and Basics Example fragment Recursion Derivation trees

First solution: covert movement

cake :: d -k what :: d -k -wh
John :: d -k who :: d -k -wh
eat :: =d +k̄ =d v ε :: =t +wh c
will :: =v +k t ε :: =t c

<

cake :: -keat :: +k̄ =d v

>

<

cake ::eat :: =d v

>

>

<

cake ::eat :: v

John :: -k

>

<

>

>

<

cake ::eat ::

will :: t

John ::

Note order of features on eat!

72 / 196



Notation and Basics Example fragment Recursion Derivation trees

First solution: covert movement

cake :: d -k what :: d -k -wh
John :: d -k who :: d -k -wh
eat :: =d +k̄ =d v ε :: =t +wh c
will :: =v +k t ε :: =t c

<

cake :: -keat :: +k̄ =d v

>

<

cake ::eat :: =d v

>

>

<

cake ::eat :: v

John :: -k

>

<

>

>

<

cake ::eat ::

will :: t

John ::

Note order of features on eat!

72 / 196



Notation and Basics Example fragment Recursion Derivation trees

First solution: covert movement

cake :: d -k what :: d -k -wh
John :: d -k who :: d -k -wh
eat :: =d +k̄ =d v ε :: =t +wh c
will :: =v +k t ε :: =t c

<

cake :: -keat :: +k̄ =d v

>

<

cake ::eat :: =d v

>

>

<

cake ::eat :: v

John :: -k

>

<

>

>

<

cake ::eat ::

will :: t

John ::

Note order of features on eat!

72 / 196



Notation and Basics Example fragment Recursion Derivation trees

Second solution

Separate d into subj and obj

cake :: obj what :: obj -wh
John :: subj -k who :: subj -k -wh
eat :: =obj =subj v ε :: =t +wh c
will :: =v +k t ε :: =t c

Problem “solved”:

John will eat cake
what John will eat
who will eat cake

73 / 196



Notation and Basics Example fragment Recursion Derivation trees

Outline

5 Notation and Basics

6 Example fragment

7 Recursion

8 Derivation trees

74 / 196



Notation and Basics Example fragment Recursion Derivation trees

Adding recursion

cake :: obj what :: obj -wh to :: =v inf
John :: subj -k who :: subj -k -wh seem :: =inf v
eat :: =obj =subj v ε :: =t +wh c
will :: =v +k t ε :: =t c

John will eat cake John will seem to eat cake . . .
what John will eat what John will seem to eat . . .
who will eat cake who will seem to eat cake . . .

<

>

<

cake ::eat ::

John :: -k

to :: inf

<

<

>

<

cake ::eat ::

John :: -k

to ::

seem :: v

<

<

<

>

<

cake ::eat ::

John :: -k

to ::

seem ::

will :: +k t

75 / 196



Notation and Basics Example fragment Recursion Derivation trees

Adding recursion

cake :: obj what :: obj -wh to :: =v inf
John :: subj -k who :: subj -k -wh seem :: =inf v
eat :: =obj =subj v ε :: =t +wh c
will :: =v +k t ε :: =t c

John will eat cake John will seem to eat cake . . .
what John will eat what John will seem to eat . . .
who will eat cake who will seem to eat cake . . .

<

>

<

cake ::eat ::

John :: -k

to :: inf

<

<

>

<

cake ::eat ::

John :: -k

to ::

seem :: v

<

<

<

>

<

cake ::eat ::

John :: -k

to ::

seem ::

will :: +k t

75 / 196



Notation and Basics Example fragment Recursion Derivation trees

Adding recursion

cake :: obj what :: obj -wh to :: =v inf
John :: subj -k who :: subj -k -wh seem :: =inf v
eat :: =obj =subj v ε :: =t +wh c
will :: =v +k t ε :: =t c

John will eat cake John will seem to eat cake . . .
what John will eat what John will seem to eat . . .
who will eat cake who will seem to eat cake . . .

<

>

<

cake ::eat ::

John :: -k

to :: inf

<

<

>

<

cake ::eat ::

John :: -k

to ::

seem :: v

<

<

<

>

<

cake ::eat ::

John :: -k

to ::

seem ::

will :: +k t

75 / 196



Notation and Basics Example fragment Recursion Derivation trees

Reminder: Recursion in a CFG
S → NP VP VP → runs
NP → Det N′ Det → the
N′ → N N → dog
N′ → N PP N → cat
PP → P NP P → near

S

VP
runs

NP

N′

N
cat

Det
the

S

VP
runs

NP

N′

PP

NP

N′

N
cat

Det
the

P
near

N
dog

Det
the

76 / 196



Notation and Basics Example fragment Recursion Derivation trees

Which lexical items will produce recursion?

to :: =v inf
seem :: =inf v

T′

VP

V′

DP
cake

V
eat

DP
John
-k

T
will

T′

VP

TinfP

VP

V′

DP
cake

V
eat

DP
John
-k

Tinf
to

V
seem

T
will

schmink :: =t v

T′

VP

V′

DP
cake

V
eat

DP
John
-k

T
will

T′

VP

TP

T′

VP

V′

DP
cake

V
eat

t

T
will

DP
John

V
schmink

T
will

think :: =t =subj =v

T′

VP

V′

DP
cake

V
eat

DP
John
-k

T
will

T′

VP

V′

TP

T′

VP

V′

DP
cake

V
eat

t

T
will

DP
John

V
think

DP
Mary
-k

T
will

77 / 196



Notation and Basics Example fragment Recursion Derivation trees

The old derivation

>

<

>

<

cake ::eat :: v

John :: -k

will :: +k t

John ::

v, {-k}

+k t, {-k}

t, {}

78 / 196



Notation and Basics Example fragment Recursion Derivation trees

The old derivation

>

<

>

<

cake ::eat ::

John :: -k

will :: +k t

John ::

v, {-k}

+k t, {-k}

t, {}

78 / 196



Notation and Basics Example fragment Recursion Derivation trees

The old derivation

>

<

>

<

cake ::eat ::

will :: t

John ::

v, {-k}

+k t, {-k}

t, {}

78 / 196



Notation and Basics Example fragment Recursion Derivation trees

Derivation with seem

to :: =v inf
seem :: =inf v

<

<

>

<

cake ::eat :: v

John :: -k

to :: inf

seem :: v

v, {-k}

inf, {-k}

v, {-k}

79 / 196



Notation and Basics Example fragment Recursion Derivation trees

Derivation with seem

to :: =v inf
seem :: =inf v

<

<

>

<

cake ::eat ::

John :: -k

to :: inf

seem :: v

v, {-k}

inf, {-k}

v, {-k}

79 / 196



Notation and Basics Example fragment Recursion Derivation trees

Derivation with seem

to :: =v inf
seem :: =inf v

<

<

>

<

cake ::eat ::

John :: -k

to ::

seem :: v

v, {-k}

inf, {-k}

v, {-k}

79 / 196



Notation and Basics Example fragment Recursion Derivation trees

Derivation with schmink

schmink :: =t v

<

>

<

>

<

cake ::eat :: v

John :: -k

will :: +k t

John ::

schmink :: v

v, {-k}

+k t, {-k}

t, {}

v, {}

80 / 196



Notation and Basics Example fragment Recursion Derivation trees

Derivation with schmink

schmink :: =t v

<

>

<

>

<

cake ::eat ::

John :: -k

will :: +k t

John ::

schmink :: v

v, {-k}

+k t, {-k}

t, {}

v, {}

80 / 196



Notation and Basics Example fragment Recursion Derivation trees

Derivation with schmink

schmink :: =t v

<

>

<

>

<

cake ::eat ::

John :: -k

will :: t

John ::

schmink :: v

v, {-k}

+k t, {-k}

t, {}

v, {}

80 / 196



Notation and Basics Example fragment Recursion Derivation trees

Derivation with schmink

schmink :: =t v

<

>

<

>

<

cake ::eat ::

John :: -k

will ::

John ::

schmink :: v

v, {-k}

+k t, {-k}

t, {}

v, {}

80 / 196



Notation and Basics Example fragment Recursion Derivation trees

Derivation with think

think :: =t =subj v

>

<

>

<

>

<

cake ::eat :: v

John :: -k

will :: +k t

John ::

think :: =subj v

Mary :: -k

v, {-k}

+k t, {-k}

t, {}

=subj v, {}

v, {-k}

81 / 196



Notation and Basics Example fragment Recursion Derivation trees

Derivation with think

think :: =t =subj v

>

<

>

<

>

<

cake ::eat ::

John :: -k

will :: +k t

John ::

think :: =subj v

Mary :: -k

v, {-k}

+k t, {-k}

t, {}

=subj v, {}

v, {-k}

81 / 196



Notation and Basics Example fragment Recursion Derivation trees

Derivation with think

think :: =t =subj v

>

<

>

<

>

<

cake ::eat ::

John :: -k

will :: t

John ::

think :: =subj v

Mary :: -k

v, {-k}

+k t, {-k}

t, {}

=subj v, {}

v, {-k}

81 / 196



Notation and Basics Example fragment Recursion Derivation trees

Derivation with think

think :: =t =subj v

>

<

>

<

>

<

cake ::eat ::

John :: -k

will ::

John ::

think :: =subj v

Mary :: -k

v, {-k}

+k t, {-k}

t, {}

=subj v, {}

v, {-k}

81 / 196



Notation and Basics Example fragment Recursion Derivation trees

Derivation with think

think :: =t =subj v

>

<

>

<

>

<

cake ::eat ::

John :: -k

will ::

John ::

think :: v

Mary :: -k

v, {-k}

+k t, {-k}

t, {}

=subj v, {}

v, {-k}

81 / 196



Notation and Basics Example fragment Recursion Derivation trees

Which lexical items will produce recursion?

to :: =v inf
seem :: =inf v

T′

VP

V′

DP
cake

V
eat

DP
John
-k

T
will

T′

VP

TinfP

VP

V′

DP
cake

V
eat

DP
John
-k

Tinf
to

V
seem

T
will

schmink :: =t v

T′

VP

V′

DP
cake

V
eat

DP
John
-k

T
will

T′

VP

TP

T′

VP

V′

DP
cake

V
eat

t

T
will

DP
John

V
schmink

T
will

think :: =t =subj =v

T′

VP

V′

DP
cake

V
eat

DP
John
-k

T
will

T′

VP

V′

TP

T′

VP

V′

DP
cake

V
eat

t

T
will

DP
John

V
think

DP
Mary
-k

T
will

82 / 196



Notation and Basics Example fragment Recursion Derivation trees

Importance of the SMC

The SMC ensures that there is a finite number of types (that we care about).

Recall: move



<

ε :: +wh c >

who :: -wh <

ate :: what :: -wh


is undefined

So move cannot be applied to expressions of type “+wh c with two -wh things
moving out of it” (we might have written this +wh c, {-wh, -wh}).
Nor to expressions of type +wh c, {-wh -k, -wh}.
These are “dead end” types.
An expression of type t, {-wh -k, -wh} can be the input to merge.
But such types are also bound to lead to dead ends.

So any type of the form α, {. . . , -fαi , . . . , -fαj , . . . } is not useful.
Thus there are only a finite number of useful types.

(Michaelis 2001)
83 / 196



Notation and Basics Example fragment Recursion Derivation trees

Importance of the SMC

The SMC ensures that there is a finite number of types (that we care about).

Recall: move



<

ε :: +wh c >

who :: -wh <

ate :: what :: -wh


is undefined

So move cannot be applied to expressions of type “+wh c with two -wh things
moving out of it” (we might have written this +wh c, {-wh, -wh}).

Nor to expressions of type +wh c, {-wh -k, -wh}.
These are “dead end” types.
An expression of type t, {-wh -k, -wh} can be the input to merge.
But such types are also bound to lead to dead ends.

So any type of the form α, {. . . , -fαi , . . . , -fαj , . . . } is not useful.
Thus there are only a finite number of useful types.

(Michaelis 2001)
83 / 196



Notation and Basics Example fragment Recursion Derivation trees

Importance of the SMC

The SMC ensures that there is a finite number of types (that we care about).

Recall: move



<

ε :: +wh c >

who :: -wh <

ate :: what :: -wh


is undefined

So move cannot be applied to expressions of type “+wh c with two -wh things
moving out of it” (we might have written this +wh c, {-wh, -wh}).
Nor to expressions of type +wh c, {-wh -k, -wh}.
These are “dead end” types.

An expression of type t, {-wh -k, -wh} can be the input to merge.
But such types are also bound to lead to dead ends.

So any type of the form α, {. . . , -fαi , . . . , -fαj , . . . } is not useful.
Thus there are only a finite number of useful types.

(Michaelis 2001)
83 / 196



Notation and Basics Example fragment Recursion Derivation trees

Importance of the SMC

The SMC ensures that there is a finite number of types (that we care about).

Recall: move



<

ε :: +wh c >

who :: -wh <

ate :: what :: -wh


is undefined

So move cannot be applied to expressions of type “+wh c with two -wh things
moving out of it” (we might have written this +wh c, {-wh, -wh}).
Nor to expressions of type +wh c, {-wh -k, -wh}.
These are “dead end” types.
An expression of type t, {-wh -k, -wh} can be the input to merge.

But such types are also bound to lead to dead ends.

So any type of the form α, {. . . , -fαi , . . . , -fαj , . . . } is not useful.
Thus there are only a finite number of useful types.

(Michaelis 2001)
83 / 196



Notation and Basics Example fragment Recursion Derivation trees

Importance of the SMC

The SMC ensures that there is a finite number of types (that we care about).

Recall: move



<

ε :: +wh c >

who :: -wh <

ate :: what :: -wh


is undefined

So move cannot be applied to expressions of type “+wh c with two -wh things
moving out of it” (we might have written this +wh c, {-wh, -wh}).
Nor to expressions of type +wh c, {-wh -k, -wh}.
These are “dead end” types.
An expression of type t, {-wh -k, -wh} can be the input to merge.
But such types are also bound to lead to dead ends.

So any type of the form α, {. . . , -fαi , . . . , -fαj , . . . } is not useful.
Thus there are only a finite number of useful types.

(Michaelis 2001)
83 / 196



Notation and Basics Example fragment Recursion Derivation trees

Importance of the SMC

The SMC ensures that there is a finite number of types (that we care about).

Recall: move



<

ε :: +wh c >

who :: -wh <

ate :: what :: -wh


is undefined

So move cannot be applied to expressions of type “+wh c with two -wh things
moving out of it” (we might have written this +wh c, {-wh, -wh}).
Nor to expressions of type +wh c, {-wh -k, -wh}.
These are “dead end” types.
An expression of type t, {-wh -k, -wh} can be the input to merge.
But such types are also bound to lead to dead ends.

So any type of the form α, {. . . , -fαi , . . . , -fαj , . . . } is not useful.
Thus there are only a finite number of useful types.

(Michaelis 2001)
83 / 196



Notation and Basics Example fragment Recursion Derivation trees

Outline

5 Notation and Basics

6 Example fragment

7 Recursion

8 Derivation trees

84 / 196



Notation and Basics Example fragment Recursion Derivation trees

<

<

>

<

cake ::eat ::

John :: -k

to ::

seem :: v

v, {-k}

seem :: =inf v <

>

<

cake ::eat ::

John :: -k

to :: inf

inf, {-k}

to :: =v inf >

<

cake ::eat :: v

John :: -k

v, {-k}

85 / 196



Notation and Basics Example fragment Recursion Derivation trees

A possible concern

Question
“But hasn’t our eventual derived expression lost the information that ‘cake’ is a
DP?”

Answer
Yes, but only in the same way that John ate cake :: S has also lost this information.

The point is not that we can look at the whole derivation to retrieve this, it’s that
that info has already done its job.

86 / 196



Notation and Basics Example fragment Recursion Derivation trees

Derivations

John ate cake :: S

ate cake :: VP

cake :: NPate :: V

John :: NP

John :: NP
ate :: (S\NP)/NP cake :: NP

ate cake :: S\NP
John ate cake :: S

John ate cake :: S

ate cake :: S\NP

cake :: NPate :: (S\NP)/NP

John :: NP

87 / 196



Notation and Basics Example fragment Recursion Derivation trees

Derivations

John ate cake :: S

ate cake :: VP

cake :: NPate :: V

John :: NP

John :: NP
ate :: (S\NP)/NP cake :: NP

ate cake :: S\NP
John ate cake :: S

John ate cake :: S

ate cake :: S\NP

cake :: NPate :: (S\NP)/NP

John :: NP

87 / 196



Notation and Basics Example fragment Recursion Derivation trees

A possible concern

Question
“But hasn’t our eventual derived expression lost the information that ‘cake’ is a
DP?”

Answer
Yes, but only in the same way that John ate cake :: S has also lost this information.

The point is not that we can look at the whole derivation to retrieve this, it’s that
that info has already done its job.

88 / 196



Notation and Basics Example fragment Recursion Derivation trees

<

>

<

>

<

cake ::eat ::

will ::

John ::

think :: =subj v

=subj v, {}

think :: =t =subj v >

<

>

<

cake ::eat ::

will :: t

John ::

t, {}

<

>

<

cake ::eat ::

John :: -k

will :: +k t

+k t, {-k}

will :: =v +k t >

<

cake ::eat :: v

John :: -k

v, {-k}

We separate the derivational precursor
relation from the part-whole relation

t, {}

+k t, {-k}

will :: =v +k t v, {-k}

=subj v, {}

think :: =t =subj v t, {}

+k t, {-k}

will :: =v +k t v, {-k}

=subj v, {}

eat :: =obj =subj v cake :: obj

John :: subj -k

Mary :: subj -k

89 / 196



Notation and Basics Example fragment Recursion Derivation trees

<

>

<

>

<

cake ::eat ::

will ::

John ::

think :: =subj v

=subj v, {}

think :: =t =subj v >

<

>

<

cake ::eat ::

will :: t

John ::

t, {}

<

>

<

cake ::eat ::

John :: -k

will :: +k t

+k t, {-k}

will :: =v +k t >

<

cake ::eat :: v

John :: -k

v, {-k}

t, {}

+k t, {-k}

will :: =v +k t v, {-k}

=subj v, {}

think :: =t =subj v t, {}

+k t, {-k}

will :: =v +k t v, {-k}

=subj v, {}

eat :: =obj =subj v cake :: obj

John :: subj -k

Mary :: subj -k

89 / 196



Notation and Basics Example fragment Recursion Derivation trees

<

>

<

>

<

cake ::eat ::

will ::

John ::

think :: =subj v

=subj v, {}

think :: =t =subj v >

<

>

<

cake ::eat ::

will :: t

John ::

t, {}

<

>

<

cake ::eat ::

John :: -k

will :: +k t

+k t, {-k}

will :: =v +k t >

<

cake ::eat :: v

John :: -k

v, {-k}

t, {}

+k t, {-k}

will :: =v +k t v, {-k}

=subj v, {}

think :: =t =subj v t, {}

+k t, {-k}

will :: =v +k t v, {-k}

=subj v, {}

eat :: =obj =subj v cake :: obj

John :: subj -k

Mary :: subj -k

89 / 196



Notation and Basics Example fragment Recursion Derivation trees

<

>

<

>

<

cake ::eat ::

will ::

John ::

think :: =subj v

=subj v, {}

think :: =t =subj v >

<

>

<

cake ::eat ::

will :: t

John ::

t, {}

<

>

<

cake ::eat ::

John :: -k

will :: +k t

+k t, {-k}

will :: =v +k t >

<

cake ::eat :: v

John :: -k

v, {-k}

t, {}

+k t, {-k}

will :: =v +k t v, {-k}

=subj v, {}

think :: =t =subj v t, {}

+k t, {-k}

will :: =v +k t v, {-k}

=subj v, {}

eat :: =obj =subj v cake :: obj

John :: subj -k

Mary :: subj -k

89 / 196



Notation and Basics Example fragment Recursion Derivation trees

Labeling of internal nodes

John ate cake :: S

ate cake :: VP

cake :: NPate :: V

John :: NP

S

VP

cake :: NPate :: V

John :: NP

90 / 196



Notation and Basics Example fragment Recursion Derivation trees

Labeling of internal nodes

John ate cake :: S

ate cake :: VP

cake :: NPate :: V

John :: NP

S

VP

cake :: NPate :: V

John :: NP

90 / 196



Notation and Basics Example fragment Recursion Derivation trees

Labeling of internal nodes

John :: NP
ate :: (S\NP)/NP cake :: NP

ate cake :: S\NP
John ate cake :: S

John ate cake :: S

ate cake :: S\NP

cake :: NPate :: (S\NP)/NP

John :: NP

S

S\NP

cake :: NPate :: (S\NP)/NP

John :: NP

91 / 196



Notation and Basics Example fragment Recursion Derivation trees

Labeling of internal nodes

John :: NP
ate :: (S\NP)/NP cake :: NP

ate cake :: S\NP
John ate cake :: S

John ate cake :: S

ate cake :: S\NP

cake :: NPate :: (S\NP)/NP

John :: NP

S

S\NP

cake :: NPate :: (S\NP)/NP

John :: NP

91 / 196



Notation and Basics Example fragment Recursion Derivation trees

<

>

<

>

<

cake ::eat ::

will ::

John ::

think :: =subj v

=subj v, {}

think :: =t =subj v >

<

>

<

cake ::eat ::

will :: t

John ::

t, {}

<

>

<

cake ::eat ::

John :: -k

will :: +k t

+k t, {-k}

will :: =v +k t >

<

cake ::eat :: v

John :: -k

v, {-k}

t, {}

+k t, {-k}

will :: =v +k t v, {-k}

=subj v, {}

think :: =t =subj v t, {}

+k t, {-k}

will :: =v +k t v, {-k}

=subj v, {}

eat :: =obj =subj v cake :: obj

John :: subj -k

Mary :: subj -k

92 / 196



Notation and Basics Example fragment Recursion Derivation trees

c, {}

+wh c, {-wh}

ε :: =t +wh c t, {-wh}

+k t, {-k, -wh}

will :: =v +k t v, {-k, -wh}

=subj v, {-wh}

think :: =t =subj v t, {-wh}

+k t, {-k, -wh}

will :: =v +k t v, {-k, -wh}

=subj v, {-wh}

eat :: =obj =subj v what :: obj -wh

John :: subj -k

Mary :: subj -k

t, {}

+k t, {-k}

will :: =v +k t v, {-k}

=subj v, {}

think :: =t =subj v t, {}

+k t, {-k}

will :: =v +k t v, {-k}

=subj v, {}

eat :: =obj =subj v cake :: obj

John :: subj -k

Mary :: subj -k

93 / 196



Notation and Basics Example fragment Recursion Derivation trees

c, {}

+wh c, {-wh}

ε :: =t +wh c t, {-wh}

+k t, {-k, -wh}

will :: =v +k t v, {-k, -wh}

=subj v, {-wh}

think :: =t =subj v t, {-wh}

+k t, {-k, -wh}

will :: =v +k t v, {-k, -wh}

=subj v, {-wh}

eat :: =obj =subj v what :: obj -wh

John :: subj -k

Mary :: subj -k

t, {}

+k t, {-k}

will :: =v +k t v, {-k}

=subj v, {}

think :: =t =subj v t, {}

+k t, {-k}

will :: =v +k t v, {-k}

=subj v, {}

eat :: =obj =subj v cake :: obj

John :: subj -k

Mary :: subj -k

93 / 196



Notation and Basics Example fragment Recursion Derivation trees

Context-free structure

Schemas for merge steps:

〈γ, α1, . . . , αj , β1, . . . , βk〉 → 〈=fγ, α1, . . . , αj〉 〈f, β1, . . . , βk〉
〈γ, α1, . . . , αj , δ, β1, . . . , βk〉 → 〈=fγ, α1, . . . , αj〉 〈fδ, β1, . . . , βk〉

Schemas for move steps:

〈γ, α1, . . . , αi−1, αi+1, . . . , αk〉 → 〈+fγ, α1, . . . , αi−1, -f, αi+1, . . . , αk〉
〈γ, α1, . . . , αi−1, δ, αi+1, . . . , αk〉 → 〈+fγ, α1, . . . , αi−1, -fδ, αi+1, . . . , αk〉

move steps change something without combining it with anything
Compare with unary CFG rules, or type-raising in CCG, or . . .

94 / 196



Notation and Basics Example fragment Recursion Derivation trees

Context-free structure

Schemas for merge steps:

〈γ, α1, . . . , αj , β1, . . . , βk〉 → 〈=fγ, α1, . . . , αj〉 〈f, β1, . . . , βk〉
〈γ, α1, . . . , αj , δ, β1, . . . , βk〉 → 〈=fγ, α1, . . . , αj〉 〈fδ, β1, . . . , βk〉

Schemas for move steps:

〈γ, α1, . . . , αi−1, αi+1, . . . , αk〉 → 〈+fγ, α1, . . . , αi−1, -f, αi+1, . . . , αk〉
〈γ, α1, . . . , αi−1, δ, αi+1, . . . , αk〉 → 〈+fγ, α1, . . . , αi−1, -fδ, αi+1, . . . , αk〉

move steps change something without combining it with anything
Compare with unary CFG rules, or type-raising in CCG, or . . .

94 / 196



Notation and Basics Example fragment Recursion Derivation trees

c, {}

+wh c, {-wh}

ε :: =t +wh c t, {-wh}

+k t, {-k, -wh}

will :: =v +k t v, {-k, -wh}

=subj v, {-wh}

think :: =t =subj v t, {-wh}

+k t, {-k, -wh}

will :: =v +k t v, {-k, -wh}

=subj v, {-wh}

eat :: =obj =subj v what :: obj -wh

John :: subj -k

Mary :: subj -k

c, {}

+wh c, {-wh}

ε :: =t +wh c t, {-wh}

+k t, {-k, -wh}

will :: =v +k t v, {-k, -wh}

=subj v, {-wh}

think :: =t =subj v t, {-wh}

+k t, {-k -wh}

will :: =v +k t v, {-k -wh}

=subj v, {}

eat :: =obj =subj v cake :: obj

who :: subj -k -wh

Mary :: subj -k

95 / 196



Notation and Basics Example fragment Recursion Derivation trees

c, {}

+wh c, {-wh}

ε :: =t +wh c t, {-wh}

+k t, {-k, -wh}

will :: =v +k t v, {-k, -wh}

=subj v, {-wh}

think :: =t =subj v t, {-wh}

+k t, {-k, -wh}

will :: =v +k t v, {-k, -wh}

=subj v, {-wh}

eat :: =obj =subj v what :: obj -wh

John :: subj -k

Mary :: subj -k

c, {}

+wh c, {-wh}

ε :: =t +wh c t, {-wh}

+k t, {-k, -wh}

will :: =v +k t v, {-k, -wh}

=subj v, {-wh}

think :: =t =subj v t, {-wh}

+k t, {-k -wh}

will :: =v +k t v, {-k -wh}

=subj v, {}

eat :: =obj =subj v cake :: obj

who :: subj -k -wh

Mary :: subj -k

95 / 196



Notation and Basics Example fragment Recursion Derivation trees

Importance of the SMC

The SMC ensures that there is a finite number of types (that we care about).

Recall: move



<

ε :: +wh c >

who :: -wh <

ate :: what :: -wh


is undefined

So move cannot be applied to expressions of type “+wh c with two -wh things
moving out of it” (we might have written this +wh c, {-wh, -wh}).
Nor to expressions of type +wh c, {-wh -k, -wh}.
These are “dead end” types.
An expression of type t, {-wh -k, -wh} can be the input to merge.
But such types are also bound to lead to dead ends.

So any type of the form α, {. . . , -fαi , . . . , -fαj , . . . } is not useful.
Thus there are only a finite number of useful types.

(Michaelis 2001)
96 / 196



References I

Billot, S. and Lang, B. (1989). The structure of shared forests in ambiguous parsing. In Proceedings of
the 1989 Meeting of the Association of Computational Linguistics.

Chomsky, N. (1965). Aspects of the Theory of Syntax. MIT Press, Cambridge, MA.

Chomsky, N. (1980). Rules and Representations. Columbia University Press, New York.

Ferreira, F. (2005). Psycholinguistics, formal grammars, and cognitive science. The Linguistic Review,
22:365–380.

Gärtner, H.-M. and Michaelis, J. (2010). On the Treatment of Multiple-Wh Interrogatives in
Minimalist Grammars. In Hanneforth, T. and Fanselow, G., editors, Language and Logos, pages
339–366. Akademie Verlag, Berlin.

Gibson, E. and Wexler, K. (1994). Triggers. Linguistic Inquiry, 25:407–454.

Hale, J. (2006). Uncertainty about the rest of the sentence. Cognitive Science, 30:643–Âŋ672.

Hale, J. T. (2001). A probabilistic earley parser as a psycholinguistic model. In Proceedings of the
Second Meeting of the North American Chapter of the Association for Computational Linguistics.

Hunter, T. (2011). Insertion Minimalist Grammars: Eliminating redundancies between merge and
move. In Kanazawa, M., Kornai, A., Kracht, M., and Seki, H., editors, The Mathematics of
Language (MOL 12 Proceedings), volume 6878 of LNCS, pages 90–107, Berlin Heidelberg. Springer.

Hunter, T. and Dyer, C. (2013). Distributions on minimalist grammar derivations. In Proceedings of
the 13th Meeting on the Mathematics of Language.

Koopman, H. and Szabolcsi, A. (2000). Verbal Complexes. MIT Press, Cambridge, MA.



References II

Lang, B. (1988). Parsing incomplete sentences. In Proceedings of the 12th International Conference on
Computational Linguistics, pages 365–371.

Levy, R. (2008). Expectation-based syntactic comprehension. Cognition, 106(3):1126–1177.

Michaelis, J. (2001). Derivational minimalism is mildly context-sensitive. In Moortgat, M., editor,
Logical Aspects of Computational Linguistics, volume 2014 of LNCS, pages 179–198. Springer,
Berlin Heidelberg.

Miller, G. A. and Chomsky, N. (1963). Finitary models of language users. In Luce, R. D., Bush, R. R.,
and Galanter, E., editors, Handbook of Mathematical Psychology, volume 2. Wiley and Sons, New
York.

Morrill, G. (1994). Type Logical Grammar: Categorial Logic of Signs. Kluwer, Dordrecht.

Nederhof, M. J. and Satta, G. (2008). Computing partition functions of pcfgs. Research on Language
and Computation, 6(2):139–162.

Seki, H., Matsumara, T., Fujii, M., and Kasami, T. (1991). On multiple context-free grammars.
Theoretical Computer Science, 88:191–229.

Stabler, E. P. (2006). Sidewards without copying. In Wintner, S., editor, Proceedings of The 11th
Conference on Formal Grammar, pages 157–170, Stanford, CA. CSLI Publications.

Stabler, E. P. (2011). Computational perspectives on minimalism. In Boeckx, C., editor, The Oxford
Handbook of Linguistic Minimalism. Oxford University Press, Oxford.

Stabler, E. P. and Keenan, E. L. (2003). Structural similarity within and among languages. Theoretical
Computer Science, 293:345–363.



References III

Vijay-Shanker, K., Weir, D. J., and Joshi, A. K. (1987). Characterizing structural descriptions produced
by various grammatical formalisms. In Proceedings of the 25th Meeting of the Association for
Computational Linguistics, pages 104–111.

Weir, D. (1988). Characterizing mildly context-sensitive grammar formalisms. PhD thesis, University of
Pennsylvania.

Yngve, V. H. (1960). A model and an hypothesis for language structure. In Proceedings of the
American Philosophical Society, volume 104, pages 444–466.


