
Tim Hunter Computational Syntax, LSA 2023

7. Minimalist Grammars (MGs)

1 Derivation trees

Thinking back to our “even number of as” FSTA, for example, we indicated the role of states as in (1). A
more verbose way of expressing the same thing would be (2).

(1)
a

b

a

ab

0 1

b

a

1

1 0

1

0 (2)
a

b

a

ab

b

a

0

b

a

ab

b

a

1

b

a

1

a

1

a

ab

0

b

0

a

1

A representation like (2) is redundant here, because in the case of an FSTA we can always identify the
derivational antecedents of a tree by looking at its subparts.

In MGs, an expression’s derivational antecedents do not always coincide with its subparts, so representations
like (2) are not redundant in this way.

2 MG basics

MGs were originally defined in Stabler 1997; a good overview is in Stabler 2011. Many of the examples here
are from the introductory chapter of Graf 2013.

MGs are a completely lexicalized formalism: a grammar for a particular language just is a collection of
lexical items. A small example grammar (based on Graf 2013, p.12) is given in (3).

1



Tim Hunter Computational Syntax, LSA 2023

(3) the :: =N D pigs :: N ε :: =V =D v
the :: =N D –nom sleep :: V ε :: =v +nom T
which :: =N D –wh kiss :: =D V that :: =T C
which :: =N D –nom –wh owe :: =D =D V ε :: =T C
’s :: =N =D D tell :: =C =D V ε :: =T +wh C

The pieces of information on each lexical item that specify what can combine with what are called features.

• Merge checks a selector feature, written =F, and a category feature, written F.

• Move checks a licensor feature, written +F, and a licensee feature, written –F.

• The head of each newly-formed constituent is the element that had a selector feature (in the case of
merge) or licensor feature (in the case of move) checked.

• The features on a lexical item must be checked in order (starting with the leftmost). So bringing
a lexical item into a derivation commits you to a certain ordered bundle of derivational operations: a
merge step for each selector/category feature, and a move step for each licensor/licensee feature.

If the element having a selector (=X) feature checked by merge is a lexical item (i.e. a trivial, one-node tree),
then it becomes the left daughter of the resulting tree.

(4)

=X · · ·

X · · ·

merge

· · ·

· · ·

<

If the element having a selector (=X) feature checked by merge is a complex tree, then it becomes the right
daughter of the resulting tree.

(5)

=X · · · X · · ·

merge

· · · · · ·

>

The element having a licensee (–X) feature checked by merge becomes the left daughter of the resulting tree.

(6)

+X · · ·

–X · · ·

move
· · ·· · ·

>

2



Tim Hunter Computational Syntax, LSA 2023

Here’s one very simple derivation (from Graf 2013, pp.13–18).

(7)
>

<

>

<

sleepε

t

ε :: T

<

pigsthe

<

>

<

sleepε

<

pigsthe :: –nom

ε :: +nom T

ε :: =v +nom T >

<

sleepε :: v

<

pigsthe :: –nom

<

sleepε :: =D v

ε :: =V =D v sleep :: V

<

pigsthe :: D –nom

the :: =N D –nom pigs :: N

3



Tim Hunter Computational Syntax, LSA 2023

Here’s a more interesting example involving remnant movement (Graf, 2013, pp.19–20).

(8) >

<

>

<

>

>

<

tε

t

<

Buchdas

ε

Hans

hat :: C

<

tgelesen

· · ·

hat :: =T +top C >

<

>

>

<

<

tgelesen :: –top

ε

t

<

Buchdas

ε :: T

Hans

· · ·

ε :: =v +nom T >

>

<

<

tgelesen :: –top

ε :: v

Hans :: –nom

<

Buchdas

· · ·

· · ·

ε :: =V =D +acc v · · ·

gelesen :: =D V –top · · ·

das :: =N D –acc Buch :: N

Hans :: D –nom

4



Tim Hunter Computational Syntax, LSA 2023

3 The Shortest Move Constraint (SMC)

• The SMC is often presented (e.g. Stabler, 1997, 2011) as a part of the definition of the move operation:
move can apply to an expression iff

◦ the first feature on the expression’s head is a licensor feature, and

◦ there is exactly one subconstituent whose first feature is a matching licensee feature.

• A consequence of this, however, is that if we ever find ourselves with two “competing” licensee features
on subconstituents of a single expression, there will be no way to check either of them, and so such an
expression is doomed. So the SMC can equivalently be stated as a ban on expressions where licensee
features “compete” in this way (Graf, 2013, p.25).

• For example, if +/–nom and +/–acc in (8) were replaced by simply +/–case, we would end up with
two competing –case licensee features after Hans is merged, and that derivation would be doomed.

4 Derivations are finite-state

The SMC guarantees that an MG’s derivations are finite-state.

4.1 What information matters?

First, notice that it suffices to keep track of:

• the feature-sequence on the current head, and

• the feature-sequences on any other subconstituents.

The part that’s slightly unintuitive, at first, is that it’s not important to keep track of where the subcon-
stituents with unchecked features are. The reason this is not important is that they must move out of their
current positions.

Here’s a tree which shows just the states that the derivation in (8) transitions through.

(9) (C)

(+top C, –top)

(T, –top)

(+nom T, –nom, –top)

(v, –nom, –top)

(+acc v, –acc, –nom, –top)

Hans :: D –nom(=D +acc v, –acc, –top)

(V –top, –acc)

(D –acc)

Buch :: Ndas :: =N D –acc

gelesen :: =D V –top

ε :: =V =D +acc v

ε :: =v +nom T

hat :: =T +top C

5



Tim Hunter Computational Syntax, LSA 2023

4.2 How many distinctions are there?

Then, the SMC ensures that only finitely many of these tuples-of-feature-sequences (i.e. states) are needed:

• Each component of the tuples is a suffix of a lexical item’s feature-sequence, so there are only finitely-
many possibilities in each slot.

• There is a finite bound on the number of slots — namely, the number of licensee feature types plus
one.

◦ If any component other than the initial component contains anything other than licensee features,
the derivation is doomed.

◦ If any two of these non-initial components both start with –F, for some particular feature type
F, then the derivation is doomed.

◦ So the biggest possible tuple contains an initial component, plus one additional component for
each distinct type of licensee feature.

5 Where does the non-context-freeness come from, exactly?

Unsurprisingly, MGs without move generate only the context-free string languages: in such an MG, the
finite-state derivational process doesn’t “disrupt” existing tree structure at all, so it’s essentially an FSTA.

More interestingly: MGs with only “one at a time” phrasal movement (e.g. if there is only one movement
feature type) also only generate context-free string languages, because the effects of this limited kind of
structural disruption can be mimicked by an FSTA/CFG.

(10)
(C)

(+wh C, –wh)

(V, –wh)

(=D V, –wh)

what :: D –whbuy :: =D =D V

(D)

girl :: Nthe :: =N D

did :: =V +wh C

CP

C′/wh

VP/wh

V′/wh

DP/wh

ε

V

buy

DP

N

girl

D

the

C

did

DPwh

what

For an MG to generate a non-context-free string language, it needs to allow the distortions created
by movement to accumulate. Remnant movement or head movement can do this.

Here’s a grammar that generates the flip/flop/tick/tock crossing-dependencies language, using remnant
movement.

(11) ε :: S –r –l ε :: =S +r +l S
flop :: =S +r F –r tock :: =S +r T –r
flip :: =F +l S –l tick :: =T +l S –l

6



Tim Hunter Computational Syntax, LSA 2023

(12) >

>

<

tε :: S

>

<

ttock

>

<

tflop

t

>

<

ttick

>

<

tflip

ε

· · ·

· · ·

ε :: =S +r +l S >

<

>

<

ttock :: –r

>

<

tflop

t

tick :: S –l

>

<

tflip

ε

· · ·

tick :: =T +l S –l >

<

>

<

tflip :: –l

ε

tock :: T –r

>

<

tflop

t

· · ·

tock :: =S +r T –r >

<

>

<

tflop :: –r

t

flip :: S –l

ε

· · ·

flip :: =F +l S –l >

<

tflop :: F –r

ε :: –l

· · ·

flop :: =S +r F –r ε :: S –r –l

7



Tim Hunter Computational Syntax, LSA 2023

The key idea is that this grammar allows for “derivational loops” like this:

(13) >

<

>

<

tflop :: –r

>

<

tx2w2

flip :: S –l

>

<

tx1w1

· · ·

flip :: =F +l S –l >

<

>

<

tx1 :: –lw1

flop :: F –r

>

<

tx2w2

· · ·

flop :: =S +r F –r >

<

>

<

tx2 :: –rw2

x1 :: S –lw1

>

<

>

<

tflop :: –rw2x2

flip :: S –lw1x1≡

In effect, remnant movement allows us to work at the roots of two independent subtrees.

>

<

tx1 :: S –lw1

>

<

tx2 :: –rw2

merge flop; move;
merge flip; move

>

<

tflip :: S –lw1x1

>

<

tflop :: –rw2x2

This is the fundamental difference that allows MGs to go beyond FSTAs: FSTAs categorize individual trees
that grow bottom-up, whereas MGs categorize tuples of trees that grow bottom-up.

This also underlies the equivalence between MGs and Multiple Context-Free Grammars (MCFGs), which
operate over tuples of strings; see e.g. Hunter and Dyer 2013, §2 for a brief explanation of this.

References
Graf, T. (2013). Local and transderivational constraints in syntax and semantics. PhD thesis, UCLA.

Hunter, T. and Dyer, C. (2013). Distributions on Minimalist Grammar derivations. In Proceedings of the 13th Meeting
on the Mathematics of Language.

Stabler, E. P. (1997). Derivational minimalism. In Retoré, C., editor, Logical Aspects of Computational Linguistics,
volume 1328 of LNCS, pages 68–95, Berlin Heidelberg. Springer.

Stabler, E. P. (2011). Computational perspectives on minimalism. In Boeckx, C., editor, The Oxford Handbook of
Linguistic Minimalism. Oxford University Press, Oxford.

8


	Derivation trees
	MG basics
	The Shortest Move Constraint (SMC)
	Derivations are finite-state
	What information matters?
	How many distinctions are there?

	Where does the non-context-freeness come from, exactly?

