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7. Minimalist Grammars (MGs)

1 Derivation trees

Thinking back to our “even number of as” FSTA, for example, we indicated the role of states as in (1). A
more verbose way of expressing the same thing would be (2).
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A representation like (2) is redundant here, because in the case of an FSTA we can always identify the
derivational antecedents of a tree by looking at its subparts.

In MGs, an expression’s derivational antecedents do not always coincide with its subparts, so representations
like (2) are not redundant in this way.

2 MG basics

MGs were originally defined in Stabler 1997; a good overview is in Stabler 2011. Many of the examples here
are from the introductory chapter of Graf 2013.

MGs are a completely lexicalized formalism: a grammar for a particular language just is a collection of
lexical items. A small example grammar (based on Graf 2013, p.12) is given in (3).
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(3) the :: =N D pigs :: N ε :: =V =D v
the :: =N D –nom sleep :: V ε :: =v +nom T
which :: =N D –wh kiss :: =D V that :: =T C
which :: =N D –nom –wh owe :: =D =D V ε :: =T C
’s :: =N =D D tell :: =C =D V ε :: =T +wh C

The pieces of information on each lexical item that specify what can combine with what are called features.

• Merge checks a selector feature, written =F, and a category feature, written F.

• Move checks a licensor feature, written +F, and a licensee feature, written –F.

• The head of each newly-formed constituent is the element that had a selector feature (in the case of
merge) or licensor feature (in the case of move) checked.

• The features on a lexical item must be checked in order (starting with the leftmost). So bringing
a lexical item into a derivation commits you to a certain ordered bundle of derivational operations: a
merge step for each selector/category feature, and a move step for each licensor/licensee feature.

If the element having a selector (=X) feature checked by merge is a lexical item (i.e. a trivial, one-node tree),
then it becomes the left daughter of the resulting tree.

(4)

=X · · ·

X · · ·

merge

· · ·

· · ·

<

If the element having a selector (=X) feature checked by merge is a complex tree, then it becomes the right
daughter of the resulting tree.

(5)

=X · · · X · · ·

merge

· · · · · ·

>

The element having a licensee (–X) feature checked by merge becomes the left daughter of the resulting tree.

(6)

+X · · ·

–X · · ·

move
· · ·· · ·

>
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Here’s one very simple derivation (from Graf 2013, pp.13–18).

(7)
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<
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sleepε

t

ε :: T
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pigsthe

<

>
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sleepε

<

pigsthe :: –nom

ε :: +nom T

ε :: =v +nom T >

<

sleepε :: v

<

pigsthe :: –nom

<

sleepε :: =D v

ε :: =V =D v sleep :: V

<

pigsthe :: D –nom

the :: =N D –nom pigs :: N
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Here’s a more interesting example involving remnant movement (Graf, 2013, pp.19–20).
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· · ·

hat :: =T +top C >

<

>
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tgelesen :: –top

ε

t
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Buchdas

ε :: T

Hans

· · ·

ε :: =v +nom T >

>

<

<

tgelesen :: –top

ε :: v

Hans :: –nom

<

Buchdas

· · ·

· · ·

ε :: =V =D +acc v · · ·

gelesen :: =D V –top · · ·

das :: =N D –acc Buch :: N

Hans :: D –nom
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3 The Shortest Move Constraint (SMC)

• The SMC is often presented (e.g. Stabler, 1997, 2011) as a part of the definition of the move operation:
move can apply to an expression iff

◦ the first feature on the expression’s head is a licensor feature, and

◦ there is exactly one subconstituent whose first feature is a matching licensee feature.

• A consequence of this, however, is that if we ever find ourselves with two “competing” licensee features
on subconstituents of a single expression, there will be no way to check either of them, and so such an
expression is doomed. So the SMC can equivalently be stated as a ban on expressions where licensee
features “compete” in this way (Graf, 2013, p.25).

• For example, if +/–nom and +/–acc in (8) were replaced by simply +/–case, we would end up with
two competing –case licensee features after Hans is merged, and that derivation would be doomed.

4 Derivations are finite-state

The SMC guarantees that an MG’s derivations are finite-state.

4.1 What information matters?

First, notice that it suffices to keep track of:

• the feature-sequence on the current head, and

• the feature-sequences on any other subconstituents.

The part that’s slightly unintuitive, at first, is that it’s not important to keep track of where the subcon-
stituents with unchecked features are. The reason this is not important is that they must move out of their
current positions.

Here’s a tree which shows just the states that the derivation in (8) transitions through.

(9) (C)

(+top C, –top)

(T, –top)

(+nom T, –nom, –top)

(v, –nom, –top)

(+acc v, –acc, –nom, –top)

Hans :: D –nom(=D +acc v, –acc, –top)

(V –top, –acc)

(D –acc)

Buch :: Ndas :: =N D –acc

gelesen :: =D V –top

ε :: =V =D +acc v

ε :: =v +nom T

hat :: =T +top C
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4.2 How many distinctions are there?

Then, the SMC ensures that only finitely many of these tuples-of-feature-sequences (i.e. states) are needed:

• Each component of the tuples is a suffix of a lexical item’s feature-sequence, so there are only finitely-
many possibilities in each slot.

• There is a finite bound on the number of slots — namely, the number of licensee feature types plus
one.

◦ If any component other than the initial component contains anything other than licensee features,
the derivation is doomed.

◦ If any two of these non-initial components both start with –F, for some particular feature type
F, then the derivation is doomed.

◦ So the biggest possible tuple contains an initial component, plus one additional component for
each distinct type of licensee feature.

5 Where does the non-context-freeness come from, exactly?

Unsurprisingly, MGs without move generate only the context-free string languages: in such an MG, the
finite-state derivational process doesn’t “disrupt” existing tree structure at all, so it’s essentially an FSTA.

More interestingly: MGs with only “one at a time” phrasal movement (e.g. if there is only one movement
feature type) also only generate context-free string languages, because the effects of this limited kind of
structural disruption can be mimicked by an FSTA/CFG.

(10)
(C)

(+wh C, –wh)

(V, –wh)

(=D V, –wh)

what :: D –whbuy :: =D =D V

(D)

girl :: Nthe :: =N D

did :: =V +wh C

CP

C′/wh

VP/wh

V′/wh

DP/wh

ε

V

buy

DP

N

girl

D

the

C

did

DPwh

what

For an MG to generate a non-context-free string language, it needs to allow the distortions created
by movement to accumulate. Remnant movement or head movement can do this.

Here’s a grammar that generates the flip/flop/tick/tock crossing-dependencies language, using remnant
movement.

(11) ε :: S –r –l ε :: =S +r +l S
flop :: =S +r F –r tock :: =S +r T –r
flip :: =F +l S –l tick :: =T +l S –l
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(12) >

>

<

tε :: S

>

<

ttock

>

<

tflop

t

>

<

ttick

>

<

tflip

ε

· · ·

· · ·

ε :: =S +r +l S >

<

>

<

ttock :: –r

>

<

tflop

t

tick :: S –l

>

<

tflip

ε

· · ·

tick :: =T +l S –l >

<

>

<

tflip :: –l

ε

tock :: T –r

>

<

tflop

t

· · ·

tock :: =S +r T –r >

<

>

<

tflop :: –r

t

flip :: S –l

ε

· · ·

flip :: =F +l S –l >

<

tflop :: F –r

ε :: –l

· · ·

flop :: =S +r F –r ε :: S –r –l
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The key idea is that this grammar allows for “derivational loops” like this:

(13) >

<

>

<

tflop :: –r

>

<

tx2w2

flip :: S –l

>

<

tx1w1

· · ·

flip :: =F +l S –l >

<

>

<

tx1 :: –lw1

flop :: F –r

>

<

tx2w2

· · ·

flop :: =S +r F –r >

<

>

<

tx2 :: –rw2

x1 :: S –lw1

>

<

>

<

tflop :: –rw2x2

flip :: S –lw1x1≡

In effect, remnant movement allows us to work at the roots of two independent subtrees.

>

<

tx1 :: S –lw1

>

<

tx2 :: –rw2

merge flop; move;
merge flip; move

>

<

tflip :: S –lw1x1

>

<

tflop :: –rw2x2

This is the fundamental difference that allows MGs to go beyond FSTAs: FSTAs categorize individual trees
that grow bottom-up, whereas MGs categorize tuples of trees that grow bottom-up.

This also underlies the equivalence between MGs and Multiple Context-Free Grammars (MCFGs), which
operate over tuples of strings; see e.g. Hunter and Dyer 2013, §2 for a brief explanation of this.
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