
Tim Hunter Computational Syntax, LSA 2023

5. Combinatory Categorial Grammar (CCG) &

Linear Indexed Grammar (LIG)

Page references are to (and screenshots of examples are from) Steedman 2000.

1 CCG basics

CCG is a “mostly lexicalized” formalism: each language specifies its own choice of categorized lexical items,
plus its own restrictions on the set of allowable universal rules.

(1)

(2)

(Plus certain generalizations of these composition rules for additional arguments — see e.g. (5) below.)

The basic function application rules just give us a system which is equivalent to a context-free grammar.

(3)

1.1 “Order-preserving” rules

The non-crossed composition rules are essentially order-preserving, but they allow for the creation of non-
standard constituents. These play a role in explaining some kinds of coordination.

(4)

1



Tim Hunter Computational Syntax, LSA 2023

The generalized versions of composition allow more than one argument to be “delayed” — for example, an
NP and a PP, instead of just an NP as above.

(5)

In combination with type-raising of arguments (which Steedman would rather think of as a pre-syntactic,
lexical operation), composition allows for “right node raising”.

(6)

The ability to make ‘Anna married’ a constituent here is also exactly what underlies the possibility of
“extraction”.

(7)

1.2 Non-order-preserving (or “crossing”) rules

A crossed composition rule is needed to derive extraction of any non-peripheral arguments: the crossed rule
essentially makes the extracted argument peripheral, and then things work as before.

(8)

The ability to make ‘file tomorrow’ a constituent here is also exactly what underlies heavy NP shift.

(9)

These examples indicate that English includes a backward crossed composition rule (with some additional
restrictions, see pp.63–64).

2



Tim Hunter Computational Syntax, LSA 2023

(10)

But Steedman excludes the other logically-possible crossed composition rule — forward crossed composition
— from English. This simultaneously rules out illicit subject extractions, and leftward “scrambling” (pp.59–
60).

(11) *X/Y Y \Z ⇒ X\Z
(12) a. a man who(m) [I think that]S/S [Dexter likes]S/NP

b. * a man who(m) [I think that]S/S [likes Dexter]S\NP

(13) * I Dexter [think (that) likes Warren](S\NP)\NP

Notice the two important ways in which the two crossed composition rules that the theory allows (i.e. (10)
and (11)) both “respect” the directionality of the categories involved (see p.54):

• “Consistency”: In both cases, the direction in which the Y is sought is the direction in which the
Z-to-Y thing is found.

• “Inheritance”: In both cases, the direction in which the Z is sought in the input categories is the
direction in which it is sought in the output category.

So forward crossed composition is inherently about leftward “movement” of leftward arguments, and back-
ward crossed composition is inherently about rightward “movement” of rightward arguments.

2 Dutch crossing dependencies in CCG

The standard German (context-free) nesting order is straightforward to derive with only function application
(p.140).

(14)

The basic trick that allows the crossing dependencies pattern to fall out is the inclusion of forward crossed
composition in Dutch (pp.141–142).

(15)

(16)

3



Tim Hunter Computational Syntax, LSA 2023

(17)

The function composition rules combine the verbs into a single constituent which has accumulated
all of the verbs’ argument-taking slashes.

3 Linear Indexed Grammar

A Linear Indexed Grammar (LIG) enriches the now-familiar machinery of a CFG(/SLTG/FSTA) with a
stack-based memory.1 Each rule can pass the stack associated with its left-hand side nonterminal on to at
most one2 of its daughter nonterminals on the right-hand side, with the option of pushing and/or popping
some stack symbols as it does so.

Here’s an example grammar. The top of the stack is on the right. The alphabet is {a, b, c}, the nonterminals
are {S,T}, and the stack alphabet (or the set of “indices”) is {i}.

(18) S[· · · ] → a S[· · · i]
S[· · · ] → T[· · · ]
T[· · · i] → b T[· · · ] c
T[] → ε

(19) S[]

S[i]

S[ii]

S[iii]

T[iii]

cT[ii]

cT[i]

cT[]

ε

b

b

b

a

a

a

What class of languages could we generate if we restricted ourselves to left-branching LIG rules?

Useful practice:
• Write a Linear Indexed Grammar for the (non-context-free) flip/flop/tick/tock language
with crossing dependencies.

• Write a Linear Indexed Grammar for the (non-context-free) language {ww | w ∈ {a, b}∗}.

1Gazdar 1988 is a nice introduction to LIGs.
2Without this “at most one” restriction, we have the more general class of Indexed Grammars.

4



Tim Hunter Computational Syntax, LSA 2023

4 Equivalence of CCG and LIG

The basic idea of the correspondence between CCG and LIG3 is that the arguments required by a complex
category are represented as symbols on the stack.

(20) (VP/NP2)/NP1 ≡ VP[NP2,NP1]

(21) (((S/NP4)/NP3)/NP2)/NP1 ≡ S[NP4,NP3,NP2,NP1]

Then two simple application and composition rules look like this (p.210):

(22) (X · · · )/Y Y ⇒ (X · · · ) ≡ X[· · · ] → X[· · ·Y ] Y []

(X · · · )/Y Y/Z ⇒ (X · · · )/Z ≡ X[· · ·Z] → X[· · ·Y ] Y [Z]

The LIG’s unbounded stack is letting us accommodate the fact that there are unboundedly many possible
choices for (X · · · ), i.e. the range of the “principal function”.

The equivalence of LIG and CCG relies on the fact that that position — the range of the principal function
— is the only place where unboundedness can accumulate.

For this to be the case, we need type-raising to be finitely constrained (i.e. effectively, it’s just lexical
ambiguity rather than a syntactic operation), and we need to be careful about generalizing the composition
rules.

4.1 Generalized composition

Recall that we need generalized versions of the composition rules that allow for multiple arguments to be
“delayed”. Here’s one of B2 rules, for example.

(23) (X · · · )/Y (Y/Z2)/Z1 ⇒ ((X · · · )/Z2)/Z1 ≡ X[· · ·Z2Z1] → X[· · ·Y ] Y [Z2, Z1]

• This is compatible with LIG’s one-daughter requirement, because only the (X · · · ) component is un-
bounded.

• A completely general Bn rule with an unbounded number of delayed arguments Z1, Z2, Z3, · · · , however,
cannot be recast as an LIG rule: such a rule would pass an unbounded amount of information down to
two daughter nonterminals. Steedman assumes there is some maximum n for each language (e.g. n ≤ 3
for English, pp.42–43).

• This limit does not put a bound on the crossing-dependencies construction: the derivation in (17)
will generalize up to arbitrarily many verbs using only >B2

×. The >B2
× rule in (17) allows for

(· · · \NP3)/VP–SUB to be “passed along”, and the additional step in a four-verb derivation would
likewise pass along (· · · \NP4)/VP–SUB, and so on. So just the two elements Z1 and Z2 in (23) suffice.

• The kind of derivation in Steedman’s (16) on p.141, however, where the verb cluster effectively has
a right-branching structure, will not generalize up unboundedly: that three-verb derivation requires
>B2

× (to allow (· · · \NP3)\NP4 to be passed along) and a corresponding example with four verbs would
require >B3

× (to allow ((· · · \NP3)\NP4)\NP5 to be passed along).

4.2 An abstract illustration

It should be easy to see how the LIG in (18) could be extended to a grammar for {anbncndn | n ≥ 0}, which
is a kind of “prototypical” LIG language.

3For more detail, see Steedman 2000, ch.8, or Joshi et al. 1990, sec.5.

5



Tim Hunter Computational Syntax, LSA 2023

From Joshi et al. 1990, pp.41–42, here’s a corresponding CCG that brings out the relationship between the
two formalisms.

(24) a :: A (S1 · · · )/C C ⇒ (S1 · · · )
b :: B (S · · · )/S1 S1 ⇒ (S · · · )
c :: C (S · · · )/D D ⇒ (S · · · )
d :: D A (S · · · )\A ⇒ (S · · · )
ε :: S/S1 B (S · · · )\B ⇒ (S · · · )
ε :: S1 (S · · · )/S1 S1\z1/z2/z3\z4 ⇒ (S · · · )\z1/z2/z3\z4
ε :: S1\A/D/S1\B/C

Here’s the derivation of aabbccdd:

a

A

a

A

b

B

b

B

ε
S/S1

ε
S1\A/D/S1\B/C

c

C

S1\A/D/S1\B
S\A/D/S1\B
S\A/D/S1

ε
S1\A/D/S1\B/C

c

C

S1\A/D/S1\B
S\A/D\A/D/S1\B
S\A/D\A/D/S1

ε
S1

S\A/D\A/D
d

D

S\A/D\A
S\A/D

d

D

S\A
S

Zooming out a bit, here’s the important structure in a (possibly?) clearer form:

a

A

a

A

b

B

b

B
ε

S/S1

c

S1\A/D/S1\B
S\A/D/S1

c

S1\A/D/S1\B
S\A/D\A/D/S1

ε
S1

S\A/D\A/D
d

D

S\A/D
d

D

S

References
Gazdar, G. (1988). Applicability of indexed grammars to natural languages. In Reyle, U. and Rohrer, C., editors,

Natural Language Parsing and Linguistic Theories, pages 69–94. D. Reidel Publishing Company, Dordrecht.

Joshi, A. K., Shanker, K. V., and Weir, D. (1990). The convergence of mildly context-sensitive grammar formalisms.
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-90-01,
https://repository.upenn.edu/cis_reports/539/.

Steedman, M. (2000). The Syntactic Process. MIT Press, Cambridge, MA.

6

https://repository.upenn.edu/cis_reports/539/

	CCG basics
	``Order-preserving'' rules
	Non-order-preserving (or ``crossing'') rules

	Dutch crossing dependencies in CCG
	Linear Indexed Grammar
	Equivalence of CCG and LIG
	Generalized composition
	An abstract illustration


