
Tim Hunter Computational Syntax, LSA 2023

4. Tree grammars

Here’s the plan:

• The main goal here is to introduce the idea of grammars that generate trees rather than strings.

• As a first step, I’ll introduce a new, but extremely simple kind of string-generating grammar — a
strictly local grammar — that is simpler than all of the others we’ve seen so far (i.e. simpler than
FSAs).

• This will be useful because the most familiar way we’re used to thinking about constructing trees
corresponds to a strictly local tree grammar.

• From there we’ll see clearly how to “scale up” to other kinds of tree grammars.

1 Strictly local (string) grammars
(1) A strictly local (string) grammar (SLG) is a four-tuple (Σ, I, F,∆) where:

• Σ, the alphabet, is a finite set of symbols;

• I ⊆ Σ is the set of initial symbols;

• F ⊆ Σ is the set of ending symbols; and

• ∆ ⊆ Σ× Σ is the set of transitions.

There is “no state” — just the symbols. The “transitions” are just pairs of symbols, the allowed bigrams.

(2) An SLG (Σ, I, F, T ) generates a string x1x2 . . . xn ∈ Σ∗ (for n ≥ 1) iff:

• x1 ∈ I, and
• for all i ∈ {2, . . . , n}, (xi−1, xi) ∈ ∆, and
• xn ∈ F .

Notice that by this definition, there is no way for an SLG to generate the empty string.1

Here’s a very simple example SLG:

(3) Σ = {s, t, n, i, a}
I = {s, t}
F = {i, a}
∆ = {(s, t), (t, i), (t, a), (i, n), (a, n), (n, t)}

This grammar generates, for example, ti, sta, tanti and stintanta. (But not tinata or stin, for example.)

1This is non-standard. The usual definitions of strictly-local grammars in the literature include special start-of-string and
end-of-string markers as components of bigrams, which makes it possible to generate the empty string. Also, to be more precise,
what I’m describing here are 2-strictly-local grammars, which are a special case of the general idea of a k-strictly-local grammar
which specifies allowable substrings of length k. See e.g. Jäger and Rogers (2012, p.1963).

1



Tim Hunter Computational Syntax, LSA 2023

2 From strings to trees

The game we’ve been playing so far follows this pattern:

(4) a. Identify an alphabet of symbols; call it Σ.

b. This determines a certain set of strings over this alphabet; usually written Σ∗.

c. Identify some subset of Σ∗ as the stringset of interest; call this L, so L ⊆ Σ∗.

d. Ask what (string) grammar(s) can generate exactly that set of strings L.

Remember that step (4b) involves an important recursive definition:

(5) For any set Σ, we define Σ∗ as the smallest set such that:

• ε ∈ Σ∗, and

• if x ∈ Σ and u ∈ Σ∗ then (x:u) ∈ Σ∗.

Here’s the new game, following the same pattern:2

(6) a. Identify an alphabet of symbols; call it Σ.

b. This determines a certain set of trees over this alphabet; usually written TΣ.

c. Identify some subset of TΣ as the treeset of interest; call this L, so L ⊆ TΣ.

d. Ask what (tree) grammar(s) can generate exactly that set of trees L.

We have another important recursive definition for the set of trees over an alphabet:

(7) For any set Σ, we define TΣ as the smallest set such that:

• if x ∈ Σ, then x[] ∈ TΣ, and

• if x ∈ Σ and t1, t2, . . . , tk ∈ TΣ, then x[t1, t2, . . . , tk] ∈ TΣ.

So for example, if Σ = {a, b, c}, then the set TΣ looks something like this:

(8) TΣ = { a[] , b[] , c[] , a[a[]] , . . . , a[b[], b[], c[]] , . . . , b[c[a[]], a[b[], b[]]] , . . . }

But just as we allow ourselves to write a:(a:(b:ε)) more conveniently as aab (and write a:ε as a), we allow
ourselves to write this as:

(9) TΣ =


a , b , c ,

a

a

, . . . ,
a

cbb

, . . . ,

b

a

bb

c

a

, . . .


3 Strictly local tree grammars
(10) A strictly local tree grammar (SLTG) is a four-tuple (Σ, F,∆) where:

• Σ, the alphabet, is a finite set of symbols;

• F ⊆ Σ is the set of ending symbols (or, maybe better, “root symbols”); and

• ∆ ⊆ Σ∗ × Σ is the set of transitions, which must be finite.

2Good introductions to tree grammars include Thatcher (1973), Engelfriet (1975), Comon et al. (2007). Notice that it
did not take long for mathematicians and computer scientists to generalize formal language theory from strings to trees, but
(sadly?) it did take a while for the ideas to make their way back into linguistics.

2



Tim Hunter Computational Syntax, LSA 2023

When specifying transitions, I’ll switch to writing elements of Σ∗ as “lists” rather than “strings”, i.e. [a, a, b]
rather than aab. So the transition ([a, a, b], c), for example, is a “tree bigram” in which [a, a, b] are the
daughters of c.

Here’s an example SLTG:

(11) Σ = {a, b, c}
F = {a}
∆ = {([a, b], a), ([b, a], c), ([b], a), ([c], b), ([], c)}

Here are a few trees that are generated by this grammar:

(12) a

b

c

a

b

c

b

c

a

b

c

a

b

c

a

b

c

a

b

c

a

b

c

a

b

c

b

c

Another SLTG that might look a bit more familiar (in a way):

(13) Σ = {s, np, vp, v, john, mary, met, saw}
F = {s}
∆ = {([np, vp], s), ([v, np], vp), ([john], np), ([mary], np), ([saw], v), ([met], v),

([], john), ([], mary), ([], met), ([], saw)}

So there’s a tight correspondence between:
• the trees generated by a strictly-local tree grammar (SLTG), and
• the trees that we typically use to represent the way strings are generated by a context-free
(string) grammar (CFG).

4 Finite-state tree automata

As with strings, moving from strictly local to finite state allows us to enforce long-distance dependencies
across tree structures.

(14) A finite-state tree automaton (FSTA) is a four-tuple (Q,Σ, F,∆) where:

• Q is a finite set of states;

• Σ, the alphabet, is a finite set of symbols;

• F ⊆ Q is the set of ending states (or “root states”); and

• ∆ ⊆ Q∗ × Σ×Q is the set of transitions, which must be finite.

3



Tim Hunter Computational Syntax, LSA 2023

For any FSTA M = (Q,Σ, F,∆), underM is a binary predicate relating trees to states:

(15) underM (x[])(q) = ∆([], x, q)

underM (x[t1, . . . , tk])(q) =
∨

q1∈Q

. . .
∨

qk∈Q

[
∆([q1, . . . , qk], x, q) ∧ underM (t1)(q1) ∧ · · · ∧ underM (tk)(qk)

]

And L(M) is a subset of TΣ:

(16) t ∈ L(M) ⇐⇒
∨
q∈Q

[
underM (t)(q) ∧ F (q)

]

4.1 A “binary counting” example FSTA

Here’s a grammar that cares about odd and even numbers . . .

(17) Q = {0, 1}
Σ = {a, b}
F = {0}
∆ = { ([0, 0], a, 1), ([0, 0], b, 0),

([0, 1], a, 0), ([0, 1], b, 1),
([1, 0], a, 0), ([1, 0], b, 1),
([1, 1], a, 1), ([1, 1], b, 0),
([0], a, 1), ([0], b, 0),
([1], a, 0), ([1], b, 1),
([], a, 1), ([], b, 0),

}

(18)
a

b

a

ab

0 1

b

a

1

1 0

1

0

4.2 Another abstract example

Here’s a grammar that requires that every b dominates a binary-branching a.

(19) Q = {0, 1}
Σ = {a, b}
F = {0, 1}
∆ = { ([0, 0], a, 1),

([0, 1], a, 1), ([0, 1], b, 1),
([1, 0], a, 1), ([1, 0], b, 1),
([1, 1], a, 1), ([1, 1], b, 1),
([0], a, 0),
([1], a, 1), ([1], b, 1),
([], a, 0),

}

4



Tim Hunter Computational Syntax, LSA 2023

(20)
b

a

aa

0 0

1

1
b

b

a

a

aa

a

0

0 0

1

1

a

a

0

0 1

1
b

b

a

a

aa

a

0

0 0

1

1

b

a

0

1

4.3 A more linguistic example

We can use an FSTA to encode a simple version of the NPI-licensing constraint: an NPI such as anybody
or ever must be c-commanded by a licensor such as not or nobody.

(21) a. Nobody met anybody

b. * John met anybody

c. Nobody thinks that John met anybody

d. The fact that nobody met anybody surprised John

e. * The fact that nobody met John surprised anybody

The alphabet Σ is the set of English words, plus the additional symbol *.

(22) Q = {OK,NEG,LIC}
Σ = {*, John, thinks, surprised, met, anybody, ever, not, nobody, . . . }
F = {OK,LIC}
∆ = { ([NEG,NEG], *, NEG), ([], anybody, NEG),

([OK,NEG], *, NEG), ([], ever, NEG),
([NEG,OK], *, NEG), ([], not, LIC),
([OK,OK], *, OK), ([], nobody, LIC),
([LIC,NEG], *, OK), ([], x, OK) for any other x ∈ Σ− {*},
([LIC,OK], *, OK),
([OK,LIC], *, OK),
([LIC,LIC], *, OK) }

(23)
*

*

Johnsurprised

OK OK

*

*

*

anybodymet

OK NEG

nobody

LIC NEG

that

OK OK

OK OK

OK

5



Tim Hunter Computational Syntax, LSA 2023

Notice that the pattern of two-daughter transitions and zero-daughter transitions in this grammar ensures
that the generated trees will contain only (i) binary nodes with the symbol *, and (ii) leaf nodes with other
symbols.

5 So what do FSTAs gain for us?

But wait a minute — how different is (23) from what we could already do with a strictly-local tree grammar?

(24) Σ = {ok, lic, neg, that, met, surprised, nobody, anybody, ever, . . . }
∆ = {([lic, neg], ok), ([ok, neg], neg), . . . , ([nobody], lic), ([anybody], neg), ([met], ok), . . . ([], met), . . . }

ok

ok

ok

John

ok

surprised

ok

ok

neg

neg

anybody

ok

met

lic

nobody

ok

that

Of course we’re used to seeing other things as the labels for those internal nodes, and using those labels to
enforce certain other requirements (e.g. the requirement that an S is made up of an NP and a VP). But we
can just bundle all that information together.

(25) Σ = {Sok, Slic, Sneg, VPok, VPlic, VPneg, . . . , that, met, surprised, nobody, anybody, ever, . . . }
∆ = {([NPok, VPok], Sok), ([NPlic, VPneg], Sok), . . . }

Sok

VPok

NPok

John

Vok

surprised

CPok

Sok

VPneg

NPneg

anybody

Vok

met

NPlic

nobody

Cok

that

We can even use a similar trick for “movement”!

(26) a. We know John bought it yesterday

b. *We know John bought yesterday

c. *We know what John bought it yesterday

d. We know what John bought yesterday

6



Tim Hunter Computational Syntax, LSA 2023

(27) Sok

VPok

Sok

VPok

Advok

yesterday

VPok

NPok

it

Vok

bought

NPok

John

Vok

know

NPok

we

Sok

VPok

Qok

S/wh

VP/wh

Advok

yesterday

VP/wh

Vok

bought

NPok

John

NPwh

what

Vok

know

NPok

we

If we felt that the trees in (27) were missing certain important similarities, we could keep the node labels
looking more familiar and use the states of an FSTA to do the extra work.

(28)
S

VP

S

VP

Adv

yesterday

VP

NP

it

V

bought

Vok NPok

VPok Advok

NP

John

NPok VPok

V

know

Vok Sok

NP

we

NPok VPok

Sok
S

VP

Q

S

VP

Adv

yesterday

VP

V

bought

Vok

VP/wh Advok

NP

John

NPok VP/wh

NP

what

NPwh S/wh

V

know

Vok Sok

NP

we

NPok VPok

Sok

But ultimately, the key question is what information needs to be tracked in order for the
grammar to know when two subtrees are intersubstitutable, whether this is implemented
via node labels, states, or a combination of the two.

We’ve now arrived at the same class of string languages via four different routes:
• the string languages that can be generated by a pushdown (string) automaton
• the string languages that can be generated by a context-free (string) grammar
• the yields of the tree languages that can be generated by a strictly-local tree grammar
• the yields of the tree languages that can be generated by a finite-state tree grammar

(The yield of a tree is the string you get by “reading along the leaves” in order in the familiar way; the yield
of a tree language is the set of yields of the trees in the language.)

7



Tim Hunter Computational Syntax, LSA 2023

References
Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez, D., Tison, S., and Tommasi, M. (2007).

Tree automata: Techniques and applications. Available from: http://www.grappa.univ-lille3.fr/tata. release
October, 12th 2007.

Engelfriet, J. (1975). Tree automata and tree grammars. https://arxiv.org/abs/1510.02036.

Jäger, G. and Rogers, J. (2012). Formal language theory: refining the Chomsky hierarchy. Philosophical Transaction
of the Royal Society B, 367:1956–1970.

Thatcher, J. W. (1973). Tree automata: An informal survey. In Aho, A. V., editor, Currents in the Theory of
Computing, pages 143–172. Prentice-Hall.

8

https://arxiv.org/abs/1510.02036

	Strictly local (string) grammars
	From strings to trees
	Strictly local tree grammars
	Finite-state tree automata
	A ``binary counting'' example FSTA
	Another abstract example
	A more linguistic example

	So what do FSTAs gain for us?

