3. Pushdown (string) automata (and context-free grammars, a bit)

A pushdown automaton is a certain kind of "infinite-state machine". Its distinctive properties relative to other kinds of infinite-state machines come from the fact that its unbounded memory takes the form of a *stack*.

We can define pushdown automata in a way that closely parallels FSAs. (One difference is that I'm allowing ε -transitions here — but nothing much changes if we allow these in FSAs too.)

- (1) A pushdown automaton (PDA) is a five-tuple $(\Gamma, \Sigma, I, F, \Delta)$ where:
 - Γ is the *stack alphabet*;
 - Σ is the *(surface)* alphabet;
 - $I \subseteq \Gamma^*$ is the set of initial stack contents;
 - $F \subseteq \Gamma^*$ is the set of ending stack contents; and
 - $\Delta \subseteq \Gamma^* \times (\Sigma \cup \{\varepsilon\}) \times \Gamma^*$ is a *finite* set of transitions.

It's easiest to see how PDAs work via some examples.

1 A "counting" language

Here's the definition of a PDA:

(2)
$$\begin{split} \Gamma &= \{\mathbf{X},\mathbf{Y},\mathbf{A}\}\\ \Sigma &= \{\mathbf{a},\mathbf{b}\}\\ I &= \{\mathbf{X}\}\\ F &= \{\mathbf{Y}\}\\ \Delta &= \{(\mathbf{X},\mathbf{a},\mathbf{A}\mathbf{X}), (\mathbf{X},\varepsilon,\mathbf{Y}), (\mathbf{A}\mathbf{Y},\mathbf{b},\mathbf{Y})\} \end{split}$$

The transition (X, a, AX) is like a schema with unboundedly many specific instantiations of the form $(\cdots X, a, \cdots AX)$, i.e. "pop X, emit a, push A, push X".

This PDA generates $\{\mathbf{a}^n \mathbf{b}^n \mid n \ge 0\}$ by classifying prefixes into unboundedly many categories, identified by the contents of the stack.

To show that this PDA generates **aaabbb**, for example, we need to find a corresponding sequence of transitions from the initial stack-contents $X \in I$ to the ending stack-contents $Y \in F$.

	Transition	String	Stack Contents
Step 0		ε	Х
Step 1	(X, a, AX)	a	AX
Step 2	(X, a, AX)	aa	AAX
Step 3	(X, a, AX)	aaa	AAAX
Step 4	(X, ε, Y)	aaa	AAAY
Step 5	(AY, b, Y)	aaab	AAY
Step 6	(AY, b, Y)	aaabb	AY
Step 7	(AY, b, Y)	aaabbb	Y
	Step 1 Step 2 Step 3 Step 4 Step 5 Step 6	$\begin{array}{rll} {\rm Step \ 0} & -\!$	$\begin{array}{cccc} & & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ $

2 A nesting-dependencies language

 $\begin{array}{ll} (4) & \Gamma = \{ \mathrm{X},\mathrm{Y},\mathrm{F},\mathrm{T} \} \\ & \Sigma = \{ \texttt{flip},\texttt{flop},\texttt{tick},\texttt{tock} \} \\ & I = \{ \mathrm{X} \} \\ & F = \{ \mathrm{Y} \} \\ & \Delta = \{ (\mathrm{X},\texttt{flip},\mathrm{FX}), (\mathrm{X},\texttt{tick},\mathrm{TX}), (\mathrm{X},\varepsilon,\mathrm{Y}), (\mathrm{FY},\texttt{flop},\mathrm{Y}), (\mathrm{TY},\texttt{tick},\mathrm{Y}) \} \end{array}$

(5)		Transition	String	Stack Contents
	Step 0		ε	Х
	Step 1	(X, flip, FX)	flip	FX
	Step 2	(X, tick, TX)	flip tick	FTX
	Step 3	(X, flip, FX)	flip tick flip	FTFX
	Step 4	(X, flip, FX)	flip tick flip flip	FTFFX
	Step 5	(X, ε, Y)	flip tick flip flip	FTFFY
	Step 6	(FY, flop, Y)	flip tick flip flip flop	FTFY
	Step 7	(FY, flop, Y)	flip tick flip flip flop flop	FTY
	Step 8	(TY, tock, Y)	flip tick flip flip flop flop tock	FY
	Step 9	$(\mathrm{FY},\mathtt{flop},\mathrm{Y})$	flip tick flip flip flop flop tock flop	Υ

We've seen this pattern generated in two different ways now:

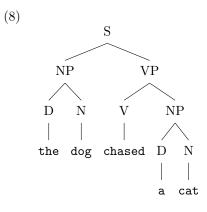
- Categorizing **initial** portions of a string ("growing left-to-right") using **unbounded stack** memory.
- Categorizing medial portions of a string ("growing inside-out") using finite memory.

3 Relationship to context-free grammars

Any context-free phrase-structure grammar can be mechanically converted into a pushdown automaton that generates the same set of strings.¹ (And vice-versa, although the other direction is a bit trickier.)

To make things very slightly more manageable, let's assume that:

- the right-hand side of any context-free rule is either (i) a single terminal symbol, or (ii) one or more nonterminal symbols; and
- the CFG to convert has a unique start symbol, S.


Then the conversion works like this:

- (6) a. The stack alphabet Γ of the PDA is the set of nonterminal symbols of the CFG.
 - b. The surface alphabet Σ of the PDA is the set of terminal symbols of the CFG.
 - c. $I = \{\varepsilon\}$, i.e. the stack starts empty
 - d. $F = \{S\}$
 - e. For each rule $A \to x$, we include in Δ a transition (ε, x, A) .
 - f. For each rule $A \to B_1 \dots B_n$, we include in Δ a transition $(B_1 \dots B_n, \varepsilon, A)$.

Suppose for example we have the very simple CFG in (7).

 $^{^{1}}$ Actually, there are various ways to do this. The one illustrated here corresponds to "bottom-up" or "shift-reduce" parsing/recognition; alternatives include top-down and left-corner.

Then the derivation indicated in (8) corresponds to the sequence of PDA transitions in (9).

))	Transition	String	Stack Contents
Step 0		ε	ε
Step 1	$(arepsilon, \mathtt{the}, \mathrm{D})$	the	D
Step 2	$(arepsilon, \operatorname{dog}, \operatorname{N})$	the dog	D N
Step 3	$(D N, \varepsilon, NP)$	the dog	NP
Step 4	$(arepsilon, \mathtt{chased}, \mathrm{V})$	the dog chased	NP V
Step 5	$(\varepsilon, \mathtt{a}, \mathrm{D})$	the dog chased a	NP V D
Step 6	$(arepsilon, \mathtt{cat}, \mathrm{N})$	the dog chased a cat	NP V D N
Step 7	$(D N, \varepsilon, NP)$	the dog chased a cat	NP V NP
Step 8	$(V NP, \varepsilon, VP)$	the dog chased a cat	NP VP
Step 9	$(NP VP, \varepsilon, S)$	the dog chased a cat	\mathbf{S}

A useful exercise is to apply this CFG-to-PDA conversion to the following CFG, and compare the workings of the resulting PDA to the example run in (5).

$\mathbf{S} \to \mathbf{FLIP} \ \mathbf{S} \ \mathbf{FLOP}$	$\mathrm{FLIP} ightarrow \mathtt{flip}$
$\mathrm{S} \rightarrow \mathrm{TICK} \; \mathrm{S} \; \mathrm{TOCK}$	$\mathrm{FLOP} \to \mathtt{flop}$
$\mathbf{S} \to \mathbf{FLIP} \ \mathbf{FLOP}$	$\mathrm{TICK} ightarrow \mathtt{tick}$
$\mathrm{S} \rightarrow \mathrm{TICK}~\mathrm{TOCK}$	$\mathrm{TOCK} \to \mathtt{tock}$