
Tim Hunter Computational Syntax, LSA 2023

3. Pushdown (string) automata
(and context-free grammars, a bit)

A pushdown automaton is a certain kind of “infinite-state machine”. Its distinctive properties relative to
other kinds of infinite-state machines come from the fact that its unbounded memory takes the form of a
stack.

We can define pushdown automata in a way that closely parallels FSAs. (One difference is that I’m allowing
ε-transitions here — but nothing much changes if we allow these in FSAs too.)

(1) A pushdown automaton (PDA) is a five-tuple (Γ,Σ, I, F,∆) where:

• Γ is the stack alphabet ;

• Σ is the (surface) alphabet ;

• I ⊆ Γ∗ is the set of initial stack contents;

• F ⊆ Γ∗ is the set of ending stack contents; and

• ∆ ⊆ Γ∗ × (Σ ∪ {ε})× Γ∗ is a finite set of transitions.

It’s easiest to see how PDAs work via some examples.

1 A “counting” language

Here’s the definition of a PDA:

(2) Γ = {X,Y,A}
Σ = {a, b}
I = {X}
F = {Y}
∆ = {(X, a,AX), (X, ε,Y), (AY, b,Y)}

The transition (X, a,AX) is like a schema with unboundedly many specific instantiations of the form
(· · ·X, a, · · ·AX), i.e. “pop X, emit a, push A, push X”.

This PDA generates {anbn | n ≥ 0} by classifying prefixes into unboundedly many categories, identified by
the contents of the stack.

To show that this PDA generates aaabbb, for example, we need to find a corresponding sequence of transitions
from the initial stack-contents X ∈ I to the ending stack-contents Y ∈ F .

(3) Transition String Stack Contents

Step 0 — ε X
Step 1 (X, a,AX) a AX
Step 2 (X, a,AX) aa AAX
Step 3 (X, a,AX) aaa AAAX
Step 4 (X, ε,Y) aaa AAAY
Step 5 (AY, b,Y) aaab AAY
Step 6 (AY, b,Y) aaabb AY
Step 7 (AY, b,Y) aaabbb Y

1



Tim Hunter Computational Syntax, LSA 2023

2 A nesting-dependencies language
(4) Γ = {X,Y,F,T}

Σ = {flip, flop, tick, tock}
I = {X}
F = {Y}
∆ = {(X, flip,FX), (X, tick,TX), (X, ε,Y), (FY, flop,Y), (TY, tick,Y)}

(5) Transition String Stack Contents

Step 0 — ε X
Step 1 (X, flip,FX) flip FX
Step 2 (X, tick,TX) flip tick FTX
Step 3 (X, flip,FX) flip tick flip FTFX
Step 4 (X, flip,FX) flip tick flip flip FTFFX
Step 5 (X, ε,Y) flip tick flip flip FTFFY
Step 6 (FY, flop,Y) flip tick flip flip flop FTFY
Step 7 (FY, flop,Y) flip tick flip flip flop flop FTY
Step 8 (TY, tock,Y) flip tick flip flip flop flop tock FY
Step 9 (FY, flop,Y) flip tick flip flip flop flop tock flop Y

We’ve seen this pattern generated in two different ways now:

• Categorizing initial portions of a string (“growing left-to-right”) using unbounded stack
memory.

• Categorizing medial portions of a string (“growing inside-out”) using finite memory.

3 Relationship to context-free grammars

Any context-free phrase-structure grammar can be mechanically converted into a pushdown automaton that
generates the same set of strings.1 (And vice-versa, although the other direction is a bit trickier.)

To make things very slightly more manageable, let’s assume that:

• the right-hand side of any context-free rule is either (i) a single terminal symbol, or (ii) one or more
nonterminal symbols; and

• the CFG to convert has a unique start symbol, S.

Then the conversion works like this:

(6) a. The stack alphabet Γ of the PDA is the set of nonterminal symbols of the CFG.

b. The surface alphabet Σ of the PDA is the set of terminal symbols of the CFG.

c. I = {ε}, i.e. the stack starts empty

d. F = {S}
e. For each rule A → x, we include in ∆ a transition (ε, x,A).

f. For each rule A → B1 . . . Bn, we include in ∆ a transition (B1 . . . Bn, ε, A).

Suppose for example we have the very simple CFG in (7).

1Actually, there are various ways to do this. The one illustrated here corresponds to “bottom-up” or “shift-reduce”
parsing/recognition; alternatives include top-down and left-corner.

2



Tim Hunter Computational Syntax, LSA 2023

(7) S → NP VP D → the

NP → D N D → a

VP → V NP N → dog

N → cat

V → chased

Then the derivation indicated in (8) corresponds to the sequence of PDA transitions in (9).

(8)
S

VP

NP

N

cat

D

a

V

chased

NP

N

dog

D

the

(9) Transition String Stack Contents

Step 0 — ε ε
Step 1 (ε, the,D) the D
Step 2 (ε, dog,N) the dog D N
Step 3 (D N, ε,NP) the dog NP
Step 4 (ε, chased,V) the dog chased NP V
Step 5 (ε, a,D) the dog chased a NP V D
Step 6 (ε, cat,N) the dog chased a cat NP V D N
Step 7 (D N, ε,NP) the dog chased a cat NP V NP
Step 8 (V NP, ε,VP) the dog chased a cat NP VP
Step 9 (NP VP, ε,S) the dog chased a cat S

A useful exercise is to apply this CFG-to-PDA conversion to the following CFG, and compare the
workings of the resulting PDA to the example run in (5).

S → FLIP S FLOP FLIP → flip

S → TICK S TOCK FLOP → flop

S → FLIP FLOP TICK → tick

S → TICK TOCK TOCK → tock

3


	A ``counting'' language
	A nesting-dependencies language
	Relationship to context-free grammars

