
Tim Hunter Computational Syntax, LSA 2023

1. Introduction/Overview:

Syntactic dependencies, structure, and derivational state

1 The big picture

Some important big ideas:

(1) Given an internalist/generative perspective, grammars are the primary object of study.

• Grammars are compact summaries of observed regularities in sentences.
• Grammars are mental systems that determine the status of sentences, from which the observed

regularities follow as consequences.
• So, what kinds of regularities arise from grammars that are structured in various ways?

(2) Grammars do interesting work by treating certain (often infinite) sets of subexpressions as intersub-
stitutable (i.e. “of the same category”).

(3) The intersubstitutability of subexpressions arises when a grammar forgets (or ignores) the distinctions
between them.

(4) The properties of a complex structure are a function of the properties of its subparts.

1.1 Very rough, incomplete historical outline

• 1950s: introduction of the systematic study of grammars (Chomsky Hierarchy) (Chomsky, 1956, 1959)

◦ goal of identifying “devices with more generative capacity than finite automata but that are more
structured (and, presumably, have less generative capacity) than arbitrary Turing machines”
(Chomsky, 1963, p.360)

• 1960s–1990s: transformational grammar adopted as a cognitive hypothesis

◦ relatively little emphasis on formal analysis or restrictiveness
◦ restrictiveness in Aspects (Chomsky, 1965) came from the evaluation metric
◦ Peters and Ritchie (1973) showed that Aspects-style transformational grammars were in fact
formally unrestricted

◦ restrictiveness imposed via substantive constraints (e.g. subjacency, parameters)

• mid 1980s: Joshi (1985) suggests (revives?) the idea of a grammar formalism as a hypothesized answer
to the question “What is a human language?”

◦ prompted the development of a “first wave” of mildly context-sensitive (MCS) grammar for-
malisms, e.g. Tree Adjoining Grammar (Joshi, 1985), Combinatory Categorial Grammar (Steed-
man, 1985)

◦ surprising convergences/equivalences among these formalisms (Joshi et al., 1990)

• early 1990s: Minimalism (Chomsky, 1995) (re?)adopts the idea that the system itself is formally
restrictive (e.g. minimality, extension condition)?

• late 1990s–2000s: Minimalism-inspired grammar formalisms (Stabler, 1997; Kobele et al., 2007) allow
comparisons with the first-wave MCS formalisms, revealing both similarities and differences

1



Tim Hunter Computational Syntax, LSA 2023

1.2 Plan for the course

• Overview: Syntactic dependencies, structure and derivational state

• Classical formalisms: Finite-state automata, context-free grammars, pushdown automata

• Important “hidden” ideas: Strict locality, tree automata

• First-wave mild context-sensitivity: Tree Adjoining Grammars (TAG), Combinatory Categorial Gram-
mars (CCG)

• Second-wave mild context-sensitivity: Minimalist Grammars (MG), Multiple Context Free Grammars
(MCFG)

2 Dependency patterns

Consider three toy example languages, where

• the lexicon has just four words: ‘flip’, ‘flop’, ‘tick’, ‘tock’;
• each occurrence of ‘flip’ must appear with a corresponding occurrence of ‘flop’;
• each occurrence of ‘tick’ must appear with a corresponding occurrence of ‘tock’.

The three languages differ in the linear arrangements of the dependent ‘flip’/‘flop’ and ‘tick’/‘tock’ pairs.

The first toy language exhibits what I’ll call serial dependencies: each ‘flip’ must be immediately followed
by a ‘flop’, and likewise for ‘tick’ and ‘tock’.

(5) a. flip flop

b. tick tock

c. flip flop tick tock

d. tick tock flip flop flip flop

e. tick tock flip flop tick tock tick tock

In the second fictional language, all occurrences of ‘flip’ and ‘tick’ must appear first, followed by all corre-
sponding occurrences of ‘flop’ and ‘tock’ in a “mirror image” order: the first word in the ‘flip’/‘tick’ portion
of a sentence is matched with the last word in the ‘flop’/‘tock’ portion. This is a nesting dependencies
pattern.

(6) a. flip flop

b. tick tock

c. flip tick tock flop

d. tick flip flip flop flop tock

e. tick flip tick tick tock tock flop tock

In the third toy language, all occurrences of ‘flip’ and ‘tick’ must again appear first, but here the corresponding
occurrences of ‘flop’ and ‘tock’ are not mirrored: the first word in the ‘flip’/‘tick’ portion is matched with
the first word in the ‘flop’/‘tock’ portion. This is a crossing dependencies pattern.

(7) a. flip flop

b. tick tock

c. flip tick flop tock

d. tick flip flip tock flop flop

e. tick flip tick tick tock flop tock tock

2



Tim Hunter Computational Syntax, LSA 2023

All three of these kinds of patterns are attested in natural language syntax.

To a pretty good first approximation:

• there is wide agreement (sometimes obscured by differences in terminology and notation) about
how to treat serial and nesting dependencies, but

• different syntactic formalisms express competing hypotheses about the mechanisms responsible
for crossing dependencies.

3 Grammatical mechanisms

3.1 The relationship between structure and dependencies

The familiar notion of a context-free phrase-structure grammar (CFG) is one way to instantiate the common
core of widely shared assumptions that can generate serial and nesting dependency patterns.

(8) S → flip flop (S)
S → tick tock (S)

S

S

S

S

tocktick

tocktick

flopflip

tocktick

(9) S → flip (S) flop
S → tick (S) tock

S

tockS

flopS

tockS

tocktick

tick

flip

tick

Important things to note about (8) and (9):

• Each rule says either
◦ that an S can be comprised of one ‘flip’ and one ‘flop’ and another S, or
◦ that an S can be comprised of one ‘tick’ and one ‘tock’ and another S.

• Serial dependencies arise if the “other S” is peripheral (e.g. S → flip flop S).
• Nesting dependencies arise if the “other S” is medial (e.g. S → flip S flop).

3.2 The key idea of derivational state

The phrase-structure rules in (8) and (9) are particularly simple in the sense that a single rule introduces
each co-dependent pair of elements; the two members of each pair appear at exactly the same height in the
tree.

In real linguistic analyses we might instead find ourselves describing such patterns using something more
along the lines of (10) and (11).

3



Tim Hunter Computational Syntax, LSA 2023

(10) S → flip F
F → flop (S)
S → tick T
T → tock (S)

S

T

S

F

S

T

S

T

tock

tick

tock

tick

flop

flip

tock

tick

(11) S → flip F
F → (S) flop
S → tick T
T → (S) tock

S

T

tockS

F

flopS

T

tockS

T

tock

tick

tick

flip

tick

It’s useful to consider the ways in which (10) and (11) do and don’t differ from (8) and (9):

• The new F nonterminal serves as a record of an unresolved ‘flip’/‘flop’ dependency; this record-keeping
mechanism allows for applications of the separate rules that introduce ‘flip’ and ‘flop’ to be coordinated.

• The coordinated effect of the two rules involving F is to put both ‘flip’ and ‘flop’ to one side of an S in
(10), and to put them on either side of an S in (11), exactly as in (8) and (9).

Another way to say this is that the F and T nonterminal symbols track the relevant derivational state.

This is the same notion of “state” that appears in finite-state automata (FSAs). The FSA in (12) is entirely
equivalent to the CFG in (10).

(12)

Sstart end

F

T

flip flop

tick tock

From this perspective, the difference between generating serial dependencies (as in (10) and (12))
and generating nesting dependencies (as in (11)) is not a difference in the nature of derivational
state-tracking mechanisms; the difference is in the structure-building operations that this
derivational state controls.

4



Tim Hunter Computational Syntax, LSA 2023

3.3 The trick with crossing dependencies

CFGs generate (5e) and (6e) by combining ‘tick’ and ‘tock’ with some other smaller expression in which all
the appropriate dependencies are already resolved.

What sets apart a crossing-dependency sentence such as (7e) is the fact that the relevant smaller expression
that a ‘tick’/‘tock’ pair needs to combine with does not correspond to a contiguous portion of the surface
string.

(5e) tick tock flip flop tick tock tick tock (serial)

(6e) tick flip tick tick tock tock flop tock (nesting)

(7e) tick flip tick tick tock flop tock tock (crossing)

Notice that trying to generate crossing dependencies via a structure such as (13) will fail for the same reason
that a structure like (14) fails to enforce nesting dependencies — in (9) and (11), it’s crucial that the bolded
portion of (6e) is “bundled up” into a single constituent.

(13)
S

Y

flop tock tock

tockX

flip tick tick

tick

(14)
S

tockY

tock tock flop

X

flip tick tick

tick

To generate crossing dependencies as in (7e), our grammatical mechanisms need to go beyond those
of context-free grammars in some way that allows the discontiguous bolded portion ‘flip tick tick
. . . flop tock tock’ to be somehow treated as a unit, within which all dependencies are resolved.

4 What we find in natural languages

All three of the patterns introduced above are attested in natural languages.

(15) John saw Peter let Marie swim (English, serial dependencies)

(16) . . . dass
that

Hans
Hans

Peter
Peter

Marie
Marie

schwimmen
swim

lassen
let

sah
saw

“. . . that Hans saw Peter let Marie swim” (German, nesting dependencies)

(17) . . . dat
that

Jan
Jan

Piet
Piet

Marie
Marie

zag
saw

helpen
help

zwemmen
swim

“. . . that Jan saw Piet help Marie swim” (Dutch, crossing dependencies)

The crossing-dependency pattern in (17) provides one direct argument that the simple contiguous-constituency
mechanisms of CFGs are an inadequate model of natural language syntax (Huybregts, 1976, 1984; Bresnan
et al., 1982; Shieber, 1985).

5



Tim Hunter Computational Syntax, LSA 2023

Chomsky (1956):

• observed that natural languages have both serial and nesting dependencies
• recognized that nesting dependencies ruled out the peripheral-constituency mechanisms of finite-state
grammars1

• did not know about crossing dependency patterns2

• but made arguments of a different kind for the inadequacy of CFGs.

The essence of these other arguments is that CFGs provide no way for “selecting as elements certain discon-
tinuous strings” (p.120), which we might think is necessary for examples like (18), (19) and (20).

(18) a. We bought a book about linguistics yesterday

b. We bought a book yesterday about linguistics

(19) a. We know John thinks the girl bought the book

b. We know which girl John thinks bought the book

(20) a. It seems John will win

b. John seems to win

References
Bresnan, J., Kaplan, R. M., Peters, S., and Zaenen, A. (1982). Cross-serial Dependencies in Dutch. Linguistic Inquiry,

13(4):613–635.

Chomsky, N. (1956). Three models for the description of language. IRE Transactions on Information Theory,
2(3):113–124.

Chomsky, N. (1959). On certain formal properties of grammars. Information and Control, 2:137–167.

Chomsky, N. (1963). Formal properties of grammars. In Luce, R. D., Bush, R. R., and Galanter, E., editors, Handbook
of Mathematical Psychology, volume 2, pages 323–418. John Wiley and Sons, Inc., New York and London.

Chomsky, N. (1965). Aspects of the Theory of Syntax. MIT Press, Cambridge, MA.

Chomsky, N. (1995). The Minimalist Program. MIT Press, Cambridge, MA.

Huybregts, R. (1976). Overlapping dependencies in Dutch. In Utrecht Working Papers in Linguistics, number 1,
pages 24–65.

Huybregts, R. (1984). The weak inadequacy of context-free phrase structure grammars. In de Haan, G. J., Trommelen,
M., and Zonneveld, W., editors, Van Periferie Naar Kern, pages 81–99. Foris, Dordrecht.

Joshi, A. (1985). How much context-sensitivity is necessary for characterizing structural descriptions? In Dowty, D.,
Karttunen, L., and Zwicky, A., editors, Natural Language Processing: Theoretical, Computational and Psychological
Perspectives, pages 206–250. Cambridge University Press, New York.

Joshi, A. K., Shanker, K. V., and Weir, D. (1990). The convergence of mildly context-sensitive grammar formalisms.
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-90-01.

Kobele, G. M., Retoré, C., and Salvati, S. (2007). An automata theoretic approach to minimalism. In Rogers, J. and
Kepser, S., editors, Proceedings of the Workshop: Model-theoretic syntax at 10. Dublin.

Peters, Jr., P. S. and Ritchie, R. W. (1973). On the generative power of transformational grammars. Information
Sciences, 6:49–83.

Shieber, S. M. (1985). Evidence against the context-freeness of natural language. Linguistics and Philosophy, 8:333–
343.

Stabler, E. P. (1997). Derivational minimalism. In Retoré, C., editor, Logical Aspects of Computational Linguistics,
volume 1328 of LNCS, pages 68–95, Berlin Heidelberg. Springer.

Steedman, M. (1985). Dependency and coordination in the grammar of Dutch and English. Language, 61:523–568.

1“English is literally beyond the bounds of these grammars because of mirror-image properties”, p.119.
2“I do not know whether . . . there are other actual languages that are literally beyond the bounds of phrase structure

description”, p.119.

6


	The big picture
	Very rough, incomplete historical outline
	Plan for the course

	Dependency patterns
	Grammatical mechanisms
	The relationship between structure and dependencies
	The key idea of derivational state
	The trick with crossing dependencies

	What we find in natural languages

