
Sharpening the empirical claims of generative syntax
through formalization

Tim Hunter

University of Minnesota, Twin Cities

ESSLLI, August 2015

Part 1: Grammars and cognitive hypotheses
What is a grammar?
What can grammars do?
Concrete illustration of a target: Surprisal

Parts 2–4: Assembling the pieces
Minimalist Grammars (MGs)
MGs and MCFGs
Probabilities on MGs

Part 5: Learning and wrap-up
Something slightly different: Learning model
Recap and open questions

Sharpening the empirical claims of generative syntax
through formalization

Tim Hunter — ESSLLI, August 2015

Part 1

Grammars and Cognitive Hypotheses

What we want to do with grammars How to get grammars to do it Derivations and representations Information-theoretic complexity metrics

Outline

1 What we want to do with grammars

2 How to get grammars to do it

3 Derivations and representations

4 Information-theoretic complexity metrics

4 / 201

What we want to do with grammars How to get grammars to do it Derivations and representations Information-theoretic complexity metrics

Outline

1 What we want to do with grammars

2 How to get grammars to do it

3 Derivations and representations

4 Information-theoretic complexity metrics

5 / 201

What we want to do with grammars How to get grammars to do it Derivations and representations Information-theoretic complexity metrics

Claims made by grammars

What are grammars used for?

“Mostly” for accounting for acceptability judgements
But there are other ways a grammar can figure in claims about cognition

Often tempting to draw a distinction between “linguistic evidence” (where
grammar lives) and “experimental evidence” (where cognition lives)

One need not make this distinction
We will proceed without it, i.e. it’s all linguistic (and/or all experimental)

6 / 201

What we want to do with grammars How to get grammars to do it Derivations and representations Information-theoretic complexity metrics

Claims made by grammars

What are grammars used for?

“Mostly” for accounting for acceptability judgements
But there are other ways a grammar can figure in claims about cognition

Often tempting to draw a distinction between “linguistic evidence” (where
grammar lives) and “experimental evidence” (where cognition lives)

One need not make this distinction
We will proceed without it, i.e. it’s all linguistic (and/or all experimental)

6 / 201

What we want to do with grammars How to get grammars to do it Derivations and representations Information-theoretic complexity metrics

Claims made by grammars

There’s a “boring” sense in which every syntax paper makes a cognitive claim,
i.e. a claim testable via acceptability facts.

For one thing, this is not a cop-out!
Why does it seem like a cop-out?
Lingering externalism/Platonism?
Perhaps partly because it’s just relatively rare to see anything being tested by
other measures

For another, we can incorporate grammars into claims that are testable by
other measures.

This is the main point of the course!
The claims/predictions will depend on internal properties of grammars, not just
what they say is good and what they say is bad
And we’ll do it without seeing grammatical derivations as real-time operations

7 / 201

What we want to do with grammars How to get grammars to do it Derivations and representations Information-theoretic complexity metrics

Claims made by grammars

There’s a “boring” sense in which every syntax paper makes a cognitive claim,
i.e. a claim testable via acceptability facts.

For one thing, this is not a cop-out!
Why does it seem like a cop-out?
Lingering externalism/Platonism?
Perhaps partly because it’s just relatively rare to see anything being tested by
other measures

For another, we can incorporate grammars into claims that are testable by
other measures.

This is the main point of the course!
The claims/predictions will depend on internal properties of grammars, not just
what they say is good and what they say is bad
And we’ll do it without seeing grammatical derivations as real-time operations

7 / 201

What we want to do with grammars How to get grammars to do it Derivations and representations Information-theoretic complexity metrics

Claims made by grammars

There’s a “boring” sense in which every syntax paper makes a cognitive claim,
i.e. a claim testable via acceptability facts.

For one thing, this is not a cop-out!
Why does it seem like a cop-out?
Lingering externalism/Platonism?
Perhaps partly because it’s just relatively rare to see anything being tested by
other measures

For another, we can incorporate grammars into claims that are testable by
other measures.

This is the main point of the course!
The claims/predictions will depend on internal properties of grammars, not just
what they say is good and what they say is bad
And we’ll do it without seeing grammatical derivations as real-time operations

7 / 201

What we want to do with grammars How to get grammars to do it Derivations and representations Information-theoretic complexity metrics

Claims made by grammars

If we accept — as I do — . . . that the rules of grammar enter into the
processing mechanisms, then evidence concerning production, recognition,
recall, and language use in general can be expected (in principle) to have
bearing on the investigation of rules of grammar, on what is sometimes
called “grammatical competence” or “knowledge of language”.

(Chomsky 1980: pp.200-201)

[S]ince a competence theory must be incorporated in a performance
model, evidence about the actual organization of behavior may prove
crucial to advancing the theory of underlying competence.

(Chomsky 1980: p.226)

Evidence about X can only advance Y if Y makes claims about X!

8 / 201

What we want to do with grammars How to get grammars to do it Derivations and representations Information-theoretic complexity metrics

Claims made by grammars

If we accept — as I do — . . . that the rules of grammar enter into the
processing mechanisms, then evidence concerning production, recognition,
recall, and language use in general can be expected (in principle) to have
bearing on the investigation of rules of grammar, on what is sometimes
called “grammatical competence” or “knowledge of language”.

(Chomsky 1980: pp.200-201)

[S]ince a competence theory must be incorporated in a performance
model, evidence about the actual organization of behavior may prove
crucial to advancing the theory of underlying competence.

(Chomsky 1980: p.226)

Evidence about X can only advance Y if Y makes claims about X!

8 / 201

What we want to do with grammars How to get grammars to do it Derivations and representations Information-theoretic complexity metrics

Preview

What we will do:
Put together a chain of linking hypotheses that bring “experimental evidence”
to bear on “grammar questions”

e.g. reading times, acquisition patterns
e.g. move as distinct operation from merge vs. unified with merge

Illustrate with some toy examples

What we will not do:

Engage with state-of-the-art findings in the sentence processing literature
End up with claims that one particular set of derivational operations is
empirically better than another

9 / 201

What we want to do with grammars How to get grammars to do it Derivations and representations Information-theoretic complexity metrics

Preview

What we will do:
Put together a chain of linking hypotheses that bring “experimental evidence”
to bear on “grammar questions”

e.g. reading times, acquisition patterns
e.g. move as distinct operation from merge vs. unified with merge

Illustrate with some toy examples

What we will not do:

Engage with state-of-the-art findings in the sentence processing literature
End up with claims that one particular set of derivational operations is
empirically better than another

9 / 201

What we want to do with grammars How to get grammars to do it Derivations and representations Information-theoretic complexity metrics

Teasers

We’ll take pairs of equivalent grammars that differ only in the move/re-merge
dimension.

They will make different predictions about sentence comprehension difficulty.
They will make different predictions about what a learner will conclude from a
common input corpus.

The issues become “distant but empirical questions”. That’s all we’re aiming for,
for now.

10 / 201

What we want to do with grammars How to get grammars to do it Derivations and representations Information-theoretic complexity metrics

Teasers

We’ll take pairs of equivalent grammars that differ only in the move/re-merge
dimension.

They will make different predictions about sentence comprehension difficulty.
They will make different predictions about what a learner will conclude from a
common input corpus.

The issues become “distant but empirical questions”. That’s all we’re aiming for,
for now.

10 / 201

What we want to do with grammars How to get grammars to do it Derivations and representations Information-theoretic complexity metrics

Outline

1 What we want to do with grammars

2 How to get grammars to do it

3 Derivations and representations

4 Information-theoretic complexity metrics

11 / 201

What we want to do with grammars How to get grammars to do it Derivations and representations Information-theoretic complexity metrics

Interpretation functions

{ S

VP

NP
Mary

V
loves

NP
John ,

S

VP

NP
everyone

V
loves

NP
John ,

S

. . .

.

. . .

.

, . . . }

John loves Mary

L(m)(j)

5

PHON
SEM

John loves everyone

∀x L(x)(j)

5
PHON

SEM

someone loves everyone

∃y∀x L(x)(y)

7

PHON
SEM

Caveats:
Maybe we’re interested in the finite specification of the set
Maybe there’s no clear line between observable and not
Maybe some evidence is based on relativities among interpretations

12 / 201

What we want to do with grammars How to get grammars to do it Derivations and representations Information-theoretic complexity metrics

Interpretation functions

{ S

VP

NP
Mary

V
loves

NP
John ,

S

VP

NP
everyone

V
loves

NP
John ,

S

. . .

.

. . .

.

, . . . }

John loves Mary

L(m)(j)

5

PHON
SEM

John loves everyone

∀x L(x)(j)

5
PHON

SEM

someone loves everyone

∃y∀x L(x)(y)

7

PHON
SEM

Caveats:
Maybe we’re interested in the finite specification of the set
Maybe there’s no clear line between observable and not
Maybe some evidence is based on relativities among interpretations

12 / 201

What we want to do with grammars How to get grammars to do it Derivations and representations Information-theoretic complexity metrics

Interpretation functions

{ S

VP

NP
Mary

V
loves

NP
John ,

S

VP

NP
everyone

V
loves

NP
John ,

S

. . .

.

. . .

.

, . . . }

John loves Mary

L(m)(j)

5

PHON
SEM

John loves everyone

∀x L(x)(j)

5
PHON

SEM

someone loves everyone

∃y∀x L(x)(y)

7

PHON
SEM

Caveats:
Maybe we’re interested in the finite specification of the set
Maybe there’s no clear line between observable and not
Maybe some evidence is based on relativities among interpretations

12 / 201

What we want to do with grammars How to get grammars to do it Derivations and representations Information-theoretic complexity metrics

Telling grammars apart

So, what if we have two different grammars — systems that define different sets of
objects — that we can’t tell apart via the sound and meaning interpretations?

(Perhaps because they’re provably equivalent, or perhaps because the evidence just
happens to be unavailable.)

Option 1: Conclude that the differences are irrelevant to us (or “they’re not
actually different”).
Option 2: Make the differences matter . . . somehow . . .

13 / 201

What we want to do with grammars How to get grammars to do it Derivations and representations Information-theoretic complexity metrics

Telling grammars apart

So, what if we have two different grammars — systems that define different sets of
objects — that we can’t tell apart via the sound and meaning interpretations?

(Perhaps because they’re provably equivalent, or perhaps because the evidence just
happens to be unavailable.)

Option 1: Conclude that the differences are irrelevant to us (or “they’re not
actually different”).
Option 2: Make the differences matter . . . somehow . . .

13 / 201

What we want to do with grammars How to get grammars to do it Derivations and representations Information-theoretic complexity metrics

What are syntactic representations for?

Morrill (1994) in favour of Option 1:

The construal of a language as a collection of signs [sound-meaning pairs] presents as an
investigative task the characterisation of this collection. This is usually taken to mean the
specification of a set of “structural descriptions” (or: “syntactic structures”). Observe
however that on our understanding a sign is an association of prosodic [phonological] and
semantic properties. It is these properties that can be observed and that are to be
modelled. There appears to be no observation which bears directly on syntactic as opposed
to prosodic and/or semantic properties, and this implies an asymmetry in the status of
these levels. A structural description is only significant insofar as it is understood as
predicting prosodic and semantic properties (e.g. in interpreting the yield of a tree as
word order). Attribution of syntactic (or prosodic or semantic) structure does not of
itself predict anything.

Where might we depart from this (to pursue Option 2)?

Object that syntactic structure does matter “of itself”
Object that prosodic and semantic properties are not the only ones we can
observe

14 / 201

What we want to do with grammars How to get grammars to do it Derivations and representations Information-theoretic complexity metrics

What are syntactic representations for?

Morrill (1994) in favour of Option 1:

The construal of a language as a collection of signs [sound-meaning pairs] presents as an
investigative task the characterisation of this collection. This is usually taken to mean the
specification of a set of “structural descriptions” (or: “syntactic structures”). Observe
however that on our understanding a sign is an association of prosodic [phonological] and
semantic properties. It is these properties that can be observed and that are to be
modelled. There appears to be no observation which bears directly on syntactic as opposed
to prosodic and/or semantic properties, and this implies an asymmetry in the status of
these levels. A structural description is only significant insofar as it is understood as
predicting prosodic and semantic properties (e.g. in interpreting the yield of a tree as
word order). Attribution of syntactic (or prosodic or semantic) structure does not of
itself predict anything.

Where might we depart from this (to pursue Option 2)?

Object that syntactic structure does matter “of itself”
Object that prosodic and semantic properties are not the only ones we can
observe

14 / 201

What we want to do with grammars How to get grammars to do it Derivations and representations Information-theoretic complexity metrics

Interpretation functions

{ S

VP

NP
Mary

V
loves

NP
John ,

S

VP

NP
everyone

V
loves

NP
John ,

S

. . .

.

. . .

.

, . . . }

John loves Mary

L(m)(j)

5

PHON
SEM

John loves everyone

∀x L(x)(j)

5
PHON

SEM

someone loves everyone

∃y∀x L(x)(y)

7

PHON
SEM

Caveats:
Maybe we’re interested in the finite specification of the set
Maybe there’s no clear line between observable and not
Maybe some evidence is based on relativities among interpretations

15 / 201

What we want to do with grammars How to get grammars to do it Derivations and representations Information-theoretic complexity metrics

Interpretation functions

{ S

VP

NP
Mary

V
loves

NP
John ,

S

VP

NP
everyone

V
loves

NP
John ,

S

. . .

.

. . .

.

, . . . }

John loves Mary

L(m)(j)

5

PHON
SEM

John loves everyone

∀x L(x)(j)

5
PHON

SEM

someone loves everyone

∃y∀x L(x)(y)

7

PHON
SEM

Caveats:
Maybe we’re interested in the finite specification of the set
Maybe there’s no clear line between observable and not
Maybe some evidence is based on relativities among interpretations

15 / 201

What we want to do with grammars How to get grammars to do it Derivations and representations Information-theoretic complexity metrics

Interpretation functions for “complexity”

What are some other interpretation functions?

number of nodes

ratio of total nodes to terminal nodes (Miller and Chomsky 1963)

degree of self-embedding (Miller and Chomsky 1963)

“depth” of memory required by a top-down parser (Yngve 1960)

minimal attachment, late closure, etc.? (Frazier and Clifton 1996)

“nature, number and complexity of” transformations (Miller and Chomsky 1963)

16 / 201

What we want to do with grammars How to get grammars to do it Derivations and representations Information-theoretic complexity metrics

Interpretation functions for “complexity”

What are some other interpretation functions?

number of nodes
ratio of total nodes to terminal nodes (Miller and Chomsky 1963)

degree of self-embedding (Miller and Chomsky 1963)

“depth” of memory required by a top-down parser (Yngve 1960)

minimal attachment, late closure, etc.? (Frazier and Clifton 1996)

“nature, number and complexity of” transformations (Miller and Chomsky 1963)

16 / 201

What we want to do with grammars How to get grammars to do it Derivations and representations Information-theoretic complexity metrics

Ratio of total nodes to terminal nodes

Won’t distinguish center-embedding from left- and right-embedding

(1) The mouse [the cat [the dog bit] chased] died. (center)
(2) The dog bit the cat [which chased the mouse [which died]]. (right)
(3) [[the dog] ’s owner] ’s friend (left)

(Miller and Chomsky 1963) 17 / 201

What we want to do with grammars How to get grammars to do it Derivations and representations Information-theoretic complexity metrics

Ratio of total nodes to terminal nodes

Won’t distinguish center-embedding from left- and right-embedding

(1) The mouse [the cat [the dog bit] chased] died. (center)
(2) The dog bit the cat [which chased the mouse [which died]]. (right)
(3) [[the dog] ’s owner] ’s friend (left)

(Miller and Chomsky 1963) 17 / 201

What we want to do with grammars How to get grammars to do it Derivations and representations Information-theoretic complexity metrics

Interpretation functions for “complexity”

What are some other interpretation functions?

number of nodes
ratio of total nodes to terminal nodes (Miller and Chomsky 1963)

degree of self-embedding (Miller and Chomsky 1963)

“depth” of memory required by a top-down parser (Yngve 1960)

minimal attachment, late closure, etc.? (Frazier and Clifton 1996)

“nature, number and complexity of” transformations (Miller and Chomsky 1963)

18 / 201

What we want to do with grammars How to get grammars to do it Derivations and representations Information-theoretic complexity metrics

Degree of (centre-)self-embedding

A tree’s degree of self-embedding is m iff:
“there is . . . a continuous path passing through m + 1 nodes
N0, . . . ,Nm, each with the same label, where each Ni (i ≥ 1) is
fully self-embedded (with something to the left and something to
the right) in the subtree dominated by Ni−1”

S

S

bS

S

bS

c

a

a

S

the mouse diedS

the cat chasedS

the dog bit

S

the dog bit the cat which S

chased the mouse which S

died

NP

’s friendNP

’s ownerNP

the dog

(Miller and Chomsky 1963)
19 / 201

What we want to do with grammars How to get grammars to do it Derivations and representations Information-theoretic complexity metrics

Degree of (centre-)self-embedding

A tree’s degree of self-embedding is m iff:
“there is . . . a continuous path passing through m + 1 nodes
N0, . . . ,Nm, each with the same label, where each Ni (i ≥ 1) is
fully self-embedded (with something to the left and something to
the right) in the subtree dominated by Ni−1”

S

S

bS

S

bS

c

a

a

S

the mouse diedS

the cat chasedS

the dog bit

S

the dog bit the cat which S

chased the mouse which S

died

NP

’s friendNP

’s ownerNP

the dog

(Miller and Chomsky 1963)
19 / 201

What we want to do with grammars How to get grammars to do it Derivations and representations Information-theoretic complexity metrics

Interpretation functions for “complexity”

What are some other interpretation functions?

number of nodes
ratio of total nodes to terminal nodes (Miller and Chomsky 1963)

degree of self-embedding (Miller and Chomsky 1963)

“depth” of memory required by a top-down parser (Yngve 1960)

minimal attachment, late closure, etc.? (Frazier and Clifton 1996)

“nature, number and complexity of” transformations (Miller and Chomsky 1963)

20 / 201

What we want to do with grammars How to get grammars to do it Derivations and representations Information-theoretic complexity metrics

Yngve’s depth
Number of constituents expected but not yet started:

S

VP

V
died

NP

S

VP

V
chased

NP

S

VP

V
bit

NP

N
dog

Det
the

N
cat

Det
the

N
mouse

Det
the

Unlike (center-)self-embedding, right-embedding doesn’t create such large lists of
expected constituents (because the expected stuff is all part of one constituent).
But left-embedding does.

Yngve’s theory was set within — perhaps justified by — a procedural story, but we
can arguably detach it from that and treat depth as just another property of trees.

(Yngve 1960) 21 / 201

What we want to do with grammars How to get grammars to do it Derivations and representations Information-theoretic complexity metrics

Yngve’s depth
Number of constituents expected but not yet started:

S

VP

V
died

NP

S

VP

V
chased

NP

S

VP

V
bit

NP

N
dog

Det
the

N
cat

Det
the

N
mouse

Det
the

Unlike (center-)self-embedding, right-embedding doesn’t create such large lists of
expected constituents (because the expected stuff is all part of one constituent).
But left-embedding does.

Yngve’s theory was set within — perhaps justified by — a procedural story, but we
can arguably detach it from that and treat depth as just another property of trees.

(Yngve 1960) 21 / 201

What we want to do with grammars How to get grammars to do it Derivations and representations Information-theoretic complexity metrics

Yngve’s depth
Number of constituents expected but not yet started:

S

VP

V
died

NP

S

VP

V
chased

NP

S

VP

V
bit

NP

N
dog

Det
the

N
cat

Det
the

N
mouse

Det
the

Unlike (center-)self-embedding, right-embedding doesn’t create such large lists of
expected constituents (because the expected stuff is all part of one constituent).
But left-embedding does.

Yngve’s theory was set within — perhaps justified by — a procedural story, but we
can arguably detach it from that and treat depth as just another property of trees.

(Yngve 1960) 21 / 201

What we want to do with grammars How to get grammars to do it Derivations and representations Information-theoretic complexity metrics

Yngve’s depth
Number of constituents expected but not yet started:

S

VP

V
died

NP

S

VP

V
chased

NP

S

VP

V
bit

NP

N
dog

Det
the

N
cat

Det
the

N
mouse

Det
the

Unlike (center-)self-embedding, right-embedding doesn’t create such large lists of
expected constituents (because the expected stuff is all part of one constituent).
But left-embedding does.

Yngve’s theory was set within — perhaps justified by — a procedural story, but we
can arguably detach it from that and treat depth as just another property of trees.

(Yngve 1960) 21 / 201

What we want to do with grammars How to get grammars to do it Derivations and representations Information-theoretic complexity metrics

Interpretation functions for “complexity”

What are some other interpretation functions?

number of nodes
ratio of total nodes to terminal nodes (Miller and Chomsky 1963)

degree of self-embedding (Miller and Chomsky 1963)

“depth” of memory required by a top-down parser (Yngve 1960)

minimal attachment, late closure, etc.? (Frazier and Clifton 1996)

“nature, number and complexity of” transformations (Miller and Chomsky 1963)

22 / 201

What we want to do with grammars How to get grammars to do it Derivations and representations Information-theoretic complexity metrics

Reaching conclusions about grammars

complexity metric + grammar −→ prediction

Typically, arguments hold the grammar fixed and present evidence in favour of a
metric.

We can flip this around: hold the metric fixed and present evidence in favour of a
grammar.

If we accept — as I do — . . . that the rules of grammar enter into the
processing mechanisms, then evidence concerning production, recognition,
recall, and language use in general can be expected (in principle) to have
bearing on the investigation of rules of grammar, on what is sometimes
called “grammatical competence” or “knowledge of language”.

(Chomsky 1980: pp.200-201)

Example: hold self-embedding fixed as the complexity metric.

(4) That [the food that [John ordered] tasted good] pleased him.

(5) That [that [the food was good] pleased John] surprised Mary.

Grammar question: Does a relative clause have a node labeled S?

Proposed answer (4) structure (5) structure Prediction
Yes . . . [S . . . [S . . .]] . . . [S . . . [S . . .]] (4) & (5) same
No . . . [S . . . [RC . . .]] . . . [S . . . [S . . .]] (5) harder

Conclusion: The fact that (5) is harder supports the “No” answer.

23 / 201

What we want to do with grammars How to get grammars to do it Derivations and representations Information-theoretic complexity metrics

Reaching conclusions about grammars

complexity metric + grammar −→ prediction

Typically, arguments hold the grammar fixed and present evidence in favour of a
metric.

We can flip this around: hold the metric fixed and present evidence in favour of a
grammar.

If we accept — as I do — . . . that the rules of grammar enter into the
processing mechanisms, then evidence concerning production, recognition,
recall, and language use in general can be expected (in principle) to have
bearing on the investigation of rules of grammar, on what is sometimes
called “grammatical competence” or “knowledge of language”.

(Chomsky 1980: pp.200-201)

Example: hold self-embedding fixed as the complexity metric.

(4) That [the food that [John ordered] tasted good] pleased him.

(5) That [that [the food was good] pleased John] surprised Mary.

Grammar question: Does a relative clause have a node labeled S?

Proposed answer (4) structure (5) structure Prediction
Yes . . . [S . . . [S . . .]] . . . [S . . . [S . . .]] (4) & (5) same
No . . . [S . . . [RC . . .]] . . . [S . . . [S . . .]] (5) harder

Conclusion: The fact that (5) is harder supports the “No” answer.

23 / 201

What we want to do with grammars How to get grammars to do it Derivations and representations Information-theoretic complexity metrics

Reaching conclusions about grammars

complexity metric + grammar −→ prediction

Example: hold self-embedding fixed as the complexity metric.

(4) That [the food that [John ordered] tasted good] pleased him.

(5) That [that [the food was good] pleased John] surprised Mary.

Grammar question: Does a relative clause have a node labeled S?

Proposed answer (4) structure (5) structure Prediction
Yes . . . [S . . . [S . . .]] . . . [S . . . [S . . .]] (4) & (5) same
No . . . [S . . . [RC . . .]] . . . [S . . . [S . . .]] (5) harder

Conclusion: The fact that (5) is harder supports the “No” answer.

23 / 201

What we want to do with grammars How to get grammars to do it Derivations and representations Information-theoretic complexity metrics

Reaching conclusions about grammars

complexity metric + grammar −→ prediction

Example: hold self-embedding fixed as the complexity metric.

(4) That [the food that [John ordered] tasted good] pleased him.

(5) That [that [the food was good] pleased John] surprised Mary.

Grammar question: Does a relative clause have a node labeled S?

Proposed answer (4) structure (5) structure Prediction
Yes . . . [S . . . [S . . .]] . . . [S . . . [S . . .]] (4) & (5) same
No . . . [S . . . [RC . . .]] . . . [S . . . [S . . .]] (5) harder

Conclusion: The fact that (5) is harder supports the “No” answer.

23 / 201

What we want to do with grammars How to get grammars to do it Derivations and representations Information-theoretic complexity metrics

Reaching conclusions about grammars

complexity metric + grammar −→ prediction

Example: hold self-embedding fixed as the complexity metric.

(4) That [the food that [John ordered] tasted good] pleased him.

(5) That [that [the food was good] pleased John] surprised Mary.

Grammar question: Does a relative clause have a node labeled S?

Proposed answer (4) structure (5) structure Prediction
Yes . . . [S . . . [S . . .]] . . . [S . . . [S . . .]] (4) & (5) same
No . . . [S . . . [RC . . .]] . . . [S . . . [S . . .]] (5) harder

Conclusion: The fact that (5) is harder supports the “No” answer.

23 / 201

What we want to do with grammars How to get grammars to do it Derivations and representations Information-theoretic complexity metrics

Reaching conclusions about grammars

complexity metric + grammar −→ prediction

Example: hold self-embedding fixed as the complexity metric.

(4) That [the food that [John ordered] tasted good] pleased him.

(5) That [that [the food was good] pleased John] surprised Mary.

Grammar question: Does a relative clause have a node labeled S?

Proposed answer (4) structure (5) structure Prediction
Yes . . . [S . . . [S . . .]] . . . [S . . . [S . . .]] (4) & (5) same
No . . . [S . . . [RC . . .]] . . . [S . . . [S . . .]] (5) harder

Conclusion: The fact that (5) is harder supports the “No” answer.

23 / 201

What we want to do with grammars How to get grammars to do it Derivations and representations Information-theoretic complexity metrics

Outline

1 What we want to do with grammars

2 How to get grammars to do it

3 Derivations and representations

4 Information-theoretic complexity metrics

24 / 201

What we want to do with grammars How to get grammars to do it Derivations and representations Information-theoretic complexity metrics

Derivations and representations

Question
But these metrics are all properties of a final, fully-constructed tree.
How can anything like this be sensitive to differences in the derivational operations
that build these trees? (e.g. TAG vs. MG, whether move is re-merge)

Answer
The relevant objects on which the interpretation functions are defined encode a
complete derivational history.

e.g. The function which, given a complete “recipe” for carrying out a derivation,
returns the number of movement steps called for by the recipe.

25 / 201

What we want to do with grammars How to get grammars to do it Derivations and representations Information-theoretic complexity metrics

Interpretation functions for “complexity”

What are some other interpretation functions?

number of nodes
ratio of total nodes to terminal nodes (Miller and Chomsky 1963)

degree of self-embedding (Miller and Chomsky 1963)

“depth” of memory required by a top-down parser (Yngve 1960)

minimal attachment, late closure, etc.? (Frazier and Clifton 1996)

“nature, number and complexity of” transformations (Miller and Chomsky 1963)

26 / 201

What we want to do with grammars How to get grammars to do it Derivations and representations Information-theoretic complexity metrics

“nature, number and complexity of the grammatical transformations
involved”

The psychological plausibility of a transformational model of the
language user would be strengthened, of course, if it could be shown that
our performance on tasks requiring an appreciation of the structure of
transformed sentences is some function of the nature, number and
complexity of the grammatical transformations involved.

(Miller and Chomsky 1963: p.481)

27 / 201

What we want to do with grammars How to get grammars to do it Derivations and representations Information-theoretic complexity metrics

Derivations and representations

Question
But these metrics are all properties of a final, fully-constructed tree.
How can anything like this be sensitive to differences in the derivational operations
that build these trees? (e.g. TAG vs. MG, whether move is re-merge)

Answer
The relevant objects on which the interpretation functions are defined encode a
complete derivational history.

e.g. The function which, given a complete “recipe” for carrying out a derivation,
returns the number of movement steps called for by the recipe.

28 / 201

What we want to do with grammars How to get grammars to do it Derivations and representations Information-theoretic complexity metrics

Derivations and representations

Question
But these metrics are all properties of a final, fully-constructed tree.
How can anything like this be sensitive to differences in the derivational operations
that build these trees? (e.g. TAG vs. MG, whether move is re-merge)

Answer
The relevant objects on which the interpretation functions are defined encode a
complete derivational history.

e.g. The function which, given a complete “recipe” for carrying out a derivation,
returns the number of movement steps called for by the recipe.

28 / 201

What we want to do with grammars How to get grammars to do it Derivations and representations Information-theoretic complexity metrics

Derivations and representations

Question
But these metrics are all properties of a final, fully-constructed tree.
How can anything like this be sensitive to differences in the derivational operations
that build these trees? (e.g. TAG vs. MG, whether move is re-merge)

Answer
The relevant objects on which the interpretation functions are defined encode a
complete derivational history.

e.g. The function which, given a complete “recipe” for carrying out a derivation,
returns the number of movement steps called for by the recipe.

28 / 201

What we want to do with grammars How to get grammars to do it Derivations and representations Information-theoretic complexity metrics

Full derivation recipes?

Are the inputs to these functions really full derivation recipes?

For minimalist syntax it’s hard to tell, because the final derived object very often
uniquely identifies a derivational history/recipe.

XP

ZPi
X YP

WP
ZPi Y RP

merge Y with RP
merge the result with ZP
merge the result with WP
merge X with the result
move ZP

29 / 201

What we want to do with grammars How to get grammars to do it Derivations and representations Information-theoretic complexity metrics

Full derivation recipes?

Are the inputs to these functions really full derivation recipes?

For minimalist syntax it’s hard to tell, because the final derived object very often
uniquely identifies a derivational history/recipe.

XP

ZPi
X YP

WP
ZPi Y RP

merge Y with RP
merge the result with ZP
merge the result with WP
merge X with the result
move ZP

29 / 201

What we want to do with grammars How to get grammars to do it Derivations and representations Information-theoretic complexity metrics

Full derivation recipes?
A few cases reveal that (we must all be already assuming that) it’s full derivations/recipes
that count.

(6) *Which claim [that Maryi was a thief] did shei deny?

did

shei

deny which claim that Maryi was a thief

which claim that Maryi was a thief
did

shei deny

(7) Which claim [that Maryi made] did shei deny?

did

shei

deny which claim that Maryi made

which claim that Maryi made
did

shei deny

did
shei

deny which claim

which claim
did

shei deny

which claim that Maryi made
did

shei deny

30 / 201

What we want to do with grammars How to get grammars to do it Derivations and representations Information-theoretic complexity metrics

Full derivation recipes?
A few cases reveal that (we must all be already assuming that) it’s full derivations/recipes
that count.

(6) *Which claim [that Maryi was a thief] did shei deny?

did

shei

deny which claim that Maryi was a thief

which claim that Maryi was a thief
did

shei deny

(7) Which claim [that Maryi made] did shei deny?

did

shei

deny which claim that Maryi made

which claim that Maryi made
did

shei deny

did
shei

deny which claim

which claim
did

shei deny

which claim that Maryi made
did

shei deny

30 / 201

What we want to do with grammars How to get grammars to do it Derivations and representations Information-theoretic complexity metrics

Full derivation recipes?
A few cases reveal that (we must all be already assuming that) it’s full derivations/recipes
that count.

(6) *Which claim [that Maryi was a thief] did shei deny?

did

shei

deny which claim that Maryi was a thief

which claim that Maryi was a thief
did

shei deny

(7) Which claim [that Maryi made] did shei deny?

did

shei

deny which claim that Maryi made

which claim that Maryi made
did

shei deny

did
shei

deny which claim

which claim
did

shei deny

which claim that Maryi made
did

shei deny

30 / 201

What we want to do with grammars How to get grammars to do it Derivations and representations Information-theoretic complexity metrics

Full derivation recipes?
A few cases reveal that (we must all be already assuming that) it’s full derivations/recipes
that count.

(6) *Which claim [that Maryi was a thief] did shei deny?

did

shei

deny which claim that Maryi was a thief

move wh-phrase

(7) Which claim [that Maryi made] did shei deny?

did

shei

deny which claim that Maryi made

move wh-phrase

did
shei

deny which claim

move wh-phrase adjoin relative clause

30 / 201

What we want to do with grammars How to get grammars to do it Derivations and representations Information-theoretic complexity metrics

Full derivation recipes?

Also:

subjacency effects without traces
compare categorial grammar

And this is not a new idea!

[The perceptual model] will utilize the full resources of the
transformational grammar to provide a structural description, consisting
of a set of P-markers and a transformational history

Miller and Chomsky (1963: p.480)

31 / 201

What we want to do with grammars How to get grammars to do it Derivations and representations Information-theoretic complexity metrics

Full derivation recipes?

Also:

subjacency effects without traces
compare categorial grammar

And this is not a new idea!

[The perceptual model] will utilize the full resources of the
transformational grammar to provide a structural description, consisting
of a set of P-markers and a transformational history

Miller and Chomsky (1963: p.480)

31 / 201

What we want to do with grammars How to get grammars to do it Derivations and representations Information-theoretic complexity metrics

Full derivation recipes?

[The perceptual model] will utilize the full resources of the
transformational grammar to provide a structural description, consisting
of a set of P-markers and a transformational history

Miller and Chomsky (1963: p.480)

S

VP

pleasetoeasy
eager

is

NP

John

T5: front embedded object, replacing ‘it’

T4: delete ‘for someone’

T1: replace COMP

S

VP

COMPAdj

easy

is

NP

it

S

VP

NP

John

V

pleases

NP

someone

32 / 201

What we want to do with grammars How to get grammars to do it Derivations and representations Information-theoretic complexity metrics

Full derivation recipes?

[The perceptual model] will utilize the full resources of the
transformational grammar to provide a structural description, consisting
of a set of P-markers and a transformational history

Miller and Chomsky (1963: p.480)

S

VP

pleasetoeasy
eager

is

NP

John

T3: delete object

T2: delete duplicate NP

T1: replace COMP

S

VP

Adj

COMPeager

is

NP

John

S

VP

NP

someone

V

pleases

NP

John

32 / 201

What we want to do with grammars How to get grammars to do it Derivations and representations Information-theoretic complexity metrics

Full derivation recipes?

Differences these days:
We’ll have things like merge and move at the internal nodes instead of TP ,
TE , etc.
We’ll have lexical items at the leaves rather than base-derived trees.

(Chomsky 1965) 33 / 201

What we want to do with grammars How to get grammars to do it Derivations and representations Information-theoretic complexity metrics

Full derivation recipes?

Differences these days:
We’ll have things like merge and move at the internal nodes instead of TP ,
TE , etc.
We’ll have lexical items at the leaves rather than base-derived trees.

(Chomsky 1965) 33 / 201

What we want to do with grammars How to get grammars to do it Derivations and representations Information-theoretic complexity metrics

Outline

1 What we want to do with grammars

2 How to get grammars to do it

3 Derivations and representations

4 Information-theoretic complexity metrics

34 / 201

What we want to do with grammars How to get grammars to do it Derivations and representations Information-theoretic complexity metrics

Surprisal and entropy reduction

Why these complexity metrics?

Partly just for concreteness, to give us a goal.
They are formalism neutral to a degree that others aren’t.
They are mechanism neutral (Marr level one).
The pieces of the puzzle that we need to get there (e.g. probabilities) seem
likely to be usable in other ways.

John Hale, Cornell Univ.

35 / 201

What we want to do with grammars How to get grammars to do it Derivations and representations Information-theoretic complexity metrics

Surprisal and entropy reduction

Why these complexity metrics?

Partly just for concreteness, to give us a goal.
They are formalism neutral to a degree that others aren’t.
They are mechanism neutral (Marr level one).
The pieces of the puzzle that we need to get there (e.g. probabilities) seem
likely to be usable in other ways.

John Hale, Cornell Univ.

35 / 201

What we want to do with grammars How to get grammars to do it Derivations and representations Information-theoretic complexity metrics

Interpretation functions

{ S

VP

NP
Mary

V
loves

NP
John ,

S

VP

NP
everyone

V
loves

NP
John ,

S

. . .

.

. . .

.

, . . . }

John loves Mary

L(m)(j)

5

PHON
SEM

John loves everyone

∀x L(x)(j)

5
PHON

SEM

someone loves everyone

∃y∀x L(x)(y)

7

PHON
SEM

Caveats:
Maybe we’re interested in the finite specification of the set
Maybe there’s no clear line between observable and not
Maybe some evidence is based on relativities among interpretations

36 / 201

What we want to do with grammars How to get grammars to do it Derivations and representations Information-theoretic complexity metrics

Interpretation functions

{ S

VP

NP
Mary

V
loves

NP
John ,

S

VP

NP
everyone

V
loves

NP
John ,

S

. . .

.

. . .

.

, . . . }

John loves Mary

L(m)(j)

4,2,3

PHON
SEM

John loves everyone

∀x L(x)(j)

4,2,5
PHON

SEM

someone loves everyone

∃y∀x L(x)(y)

5,3,6

PHON
SEM

Caveats:
Maybe we’re interested in the finite specification of the set
Maybe there’s no clear line between observable and not
Maybe some evidence is based on relativities among interpretations

36 / 201

What we want to do with grammars How to get grammars to do it Derivations and representations Information-theoretic complexity metrics

Surprisal

Given a sentence w1w2 . . .wn:

surprisal at wi = − logP(Wi = wi |W1 = w1,W2 = w2, . . . ,Wi−1 = wi−1)

37 / 201

What we want to do with grammars How to get grammars to do it Derivations and representations Information-theoretic complexity metrics

Surprisal
0.4 John ran
0.15 John saw it
0.05 John saw them
0.25 Mary ran
0.1 Mary saw it
0.05 Mary saw them

What predictions can we make about the
difficulty of comprehending
‘John saw it’?

surprisal at ‘John’ = − log P(W1 = John)
= − log(0.4 + 0.15 + 0.05)
= − log 0.6
= 0.74

surprisal at ‘saw’ = − log P(W2 = saw | W1 = John)

= − log
0.15 + 0.05

0.4 + 0.15 + 0.05
= − log 0.33
= 1.58

surprisal at ‘it’ = − log P(W3 = it | W1 = John,W2 = saw)

= − log
0.15

0.15 + 0.05
= − log 0.75
= 0.42

John saw it

1

2

38 / 201

What we want to do with grammars How to get grammars to do it Derivations and representations Information-theoretic complexity metrics

Surprisal
0.4 John ran
0.15 John saw it
0.05 John saw them
0.25 Mary ran
0.1 Mary saw it
0.05 Mary saw them

What predictions can we make about the
difficulty of comprehending
‘John saw it’?

surprisal at ‘John’ = − log P(W1 = John)
= − log(0.4 + 0.15 + 0.05)
= − log 0.6
= 0.74

surprisal at ‘saw’ = − log P(W2 = saw | W1 = John)

= − log
0.15 + 0.05

0.4 + 0.15 + 0.05
= − log 0.33
= 1.58

surprisal at ‘it’ = − log P(W3 = it | W1 = John,W2 = saw)

= − log
0.15

0.15 + 0.05
= − log 0.75
= 0.42

John saw it

1

2

38 / 201

What we want to do with grammars How to get grammars to do it Derivations and representations Information-theoretic complexity metrics

Surprisal
0.4 John ran
0.15 John saw it
0.05 John saw them
0.25 Mary ran
0.1 Mary saw it
0.05 Mary saw them

What predictions can we make about the
difficulty of comprehending
‘John saw it’?

surprisal at ‘John’ = − log P(W1 = John)
= − log(0.4 + 0.15 + 0.05)
= − log 0.6
= 0.74

surprisal at ‘saw’ = − log P(W2 = saw | W1 = John)

= − log
0.15 + 0.05

0.4 + 0.15 + 0.05
= − log 0.33
= 1.58

surprisal at ‘it’ = − log P(W3 = it | W1 = John,W2 = saw)

= − log
0.15

0.15 + 0.05
= − log 0.75
= 0.42

John saw it

1

2

38 / 201

What we want to do with grammars How to get grammars to do it Derivations and representations Information-theoretic complexity metrics

Surprisal
0.4 John ran
0.15 John saw it
0.05 John saw them
0.25 Mary ran
0.1 Mary saw it
0.05 Mary saw them

What predictions can we make about the
difficulty of comprehending
‘John saw it’?

surprisal at ‘John’ = − log P(W1 = John)
= − log(0.4 + 0.15 + 0.05)
= − log 0.6
= 0.74

surprisal at ‘saw’ = − log P(W2 = saw | W1 = John)

= − log
0.15 + 0.05

0.4 + 0.15 + 0.05
= − log 0.33
= 1.58

surprisal at ‘it’ = − log P(W3 = it | W1 = John,W2 = saw)

= − log
0.15

0.15 + 0.05
= − log 0.75
= 0.42

John saw it

1

2

38 / 201

What we want to do with grammars How to get grammars to do it Derivations and representations Information-theoretic complexity metrics

Accurate predictions made by surprisal

(Hale 2001)
39 / 201

What we want to do with grammars How to get grammars to do it Derivations and representations Information-theoretic complexity metrics

Accurate predictions made by surprisal

(8) The reporter [who attacked the senator] left the room. (easier)
(9) The reporter [who the senator attacked] left the room. (harder)

(Levy 2008)
40 / 201

What we want to do with grammars How to get grammars to do it Derivations and representations Information-theoretic complexity metrics

An important distinction

Using surprisal as a complexity metric says nothing about the form of the
knowledge that the language comprehender is using!

We’re asking “what’s the probability of wi , given that we’ve seen w1 . . .wi−1
in the past”.
This does not mean that the comprehender’s knowledge takes the form of
answers to this kind of question.
The linear nature of the metric reflects the task, not the knowledge being
probed.

41 / 201

What we want to do with grammars How to get grammars to do it Derivations and representations Information-theoretic complexity metrics

Probabilistic CFGs

1.0 S → NP VP
0.3 NP → John
0.7 NP → Mary
0.2 VP → ran
0.5 VP → V NP
0.3 VP → V S
0.4 V → believed
0.6 V → knew

S

VP

S

VP

ran

NP

John

V

believed

NP

Mary

P(Mary believed John ran) = 1.0× 0.7× 0.3× 0.4× 1.0× 0.3× 0.2
= 0.00504

42 / 201

What we want to do with grammars How to get grammars to do it Derivations and representations Information-theoretic complexity metrics

Probabilistic CFGs

1.0 S → NP VP
0.3 NP → John
0.7 NP → Mary
0.2 VP → ran
0.5 VP → V NP
0.3 VP → V S
0.4 V → believed
0.6 V → knew

S

VP

S

VP

ran

NP

John

V

believed

NP

Mary

P(Mary believed John ran) = 1.0× 0.7× 0.3× 0.4× 1.0× 0.3× 0.2
= 0.00504

42 / 201

What we want to do with grammars How to get grammars to do it Derivations and representations Information-theoretic complexity metrics

Surprisal with probabilistic CFGs

Goal: Calculate step-by-step surprisal values for ‘Mary believed John ran’

surprisal at ‘John’ = − logP(W3 = John |W1 = Mary,W2 = believed)

0.098 Mary believed Mary
0.042 Mary believed John
0.012348 Mary believed Mary knew Mary
0.01176 Mary believed Mary ran
0.008232 Mary believed Mary believed Mary
0.005292 Mary believed Mary knew John
0.005292 Mary believed John knew Mary
0.00504 Mary believed John ran
.

There are an infinite number of derivations consistent with input at each point!

surprisal at ‘John’ = − logP(W3 = John |W1 = Mary,W2 = believed)

= − log
0.042+ 0.005292+ 0.00504+ . . .

0.098+ 0.042+ 0.12348+ 0.01176+ 0.008232+ . . .

43 / 201

What we want to do with grammars How to get grammars to do it Derivations and representations Information-theoretic complexity metrics

Surprisal with probabilistic CFGs

Goal: Calculate step-by-step surprisal values for ‘Mary believed John ran’

surprisal at ‘John’ = − logP(W3 = John |W1 = Mary,W2 = believed)

0.098 Mary believed Mary
0.042 Mary believed John
0.012348 Mary believed Mary knew Mary
0.01176 Mary believed Mary ran
0.008232 Mary believed Mary believed Mary
0.005292 Mary believed Mary knew John
0.005292 Mary believed John knew Mary
0.00504 Mary believed John ran
.

There are an infinite number of derivations consistent with input at each point!

surprisal at ‘John’ = − logP(W3 = John |W1 = Mary,W2 = believed)

= − log
0.042+ 0.005292+ 0.00504+ . . .

0.098+ 0.042+ 0.12348+ 0.01176+ 0.008232+ . . .

43 / 201

What we want to do with grammars How to get grammars to do it Derivations and representations Information-theoretic complexity metrics

Surprisal with probabilistic CFGs

Goal: Calculate step-by-step surprisal values for ‘Mary believed John ran’

surprisal at ‘John’ = − logP(W3 = John |W1 = Mary,W2 = believed)

0.098 Mary believed Mary
0.042 Mary believed John
0.012348 Mary believed Mary knew Mary
0.01176 Mary believed Mary ran
0.008232 Mary believed Mary believed Mary
0.005292 Mary believed Mary knew John
0.005292 Mary believed John knew Mary
0.00504 Mary believed John ran
.

There are an infinite number of derivations consistent with input at each point!

surprisal at ‘John’ = − logP(W3 = John |W1 = Mary,W2 = believed)

= − log
0.042+ 0.005292+ 0.00504+ . . .

0.098+ 0.042+ 0.12348+ 0.01176+ 0.008232+ . . .

43 / 201

What we want to do with grammars How to get grammars to do it Derivations and representations Information-theoretic complexity metrics

Intersection grammars
1.0 S → NP VP
0.3 NP → John
0.7 NP → Mary
0.2 VP → ran
0.5 VP → V NP
0.3 VP → V S
0.4 V → believed
0.6 V → knew

∩
0 1 2

Mary believed

*

= G2

1.0 S → NP VP
0.3 NP → John
0.7 NP → Mary
0.2 VP → ran
0.5 VP → V NP
0.3 VP → V S
0.4 V → believed
0.6 V → knew

∩
0 1 2 3

Mary believed John

*

= G3

surprisal at ‘John’ = − log P(W3 = John | W1 = Mary,W2 = believed)

= − log
total weight in G3

total weight in G2

= − log
0.0672
0.224

= 1.74

(Lang 1988, Billot and Lang 1989, Hale 2006)
44 / 201

What we want to do with grammars How to get grammars to do it Derivations and representations Information-theoretic complexity metrics

Intersection grammars
1.0 S → NP VP
0.3 NP → John
0.7 NP → Mary
0.2 VP → ran
0.5 VP → V NP
0.3 VP → V S
0.4 V → believed
0.6 V → knew

∩
0 1 2

Mary believed

*

= G2

1.0 S → NP VP
0.3 NP → John
0.7 NP → Mary
0.2 VP → ran
0.5 VP → V NP
0.3 VP → V S
0.4 V → believed
0.6 V → knew

∩
0 1 2 3

Mary believed John

*

= G3

surprisal at ‘John’ = − log P(W3 = John | W1 = Mary,W2 = believed)

= − log
total weight in G3

total weight in G2

= − log
0.0672
0.224

= 1.74

(Lang 1988, Billot and Lang 1989, Hale 2006)
44 / 201

What we want to do with grammars How to get grammars to do it Derivations and representations Information-theoretic complexity metrics

Intersection grammars
1.0 S → NP VP
0.3 NP → John
0.7 NP → Mary
0.2 VP → ran
0.5 VP → V NP
0.3 VP → V S
0.4 V → believed
0.6 V → knew

∩
0 1 2

Mary believed

*

= G2

1.0 S → NP VP
0.3 NP → John
0.7 NP → Mary
0.2 VP → ran
0.5 VP → V NP
0.3 VP → V S
0.4 V → believed
0.6 V → knew

∩
0 1 2 3

Mary believed John

*

= G3

surprisal at ‘John’ = − log P(W3 = John | W1 = Mary,W2 = believed)

= − log
total weight in G3

total weight in G2

= − log
0.0672
0.224

= 1.74

(Lang 1988, Billot and Lang 1989, Hale 2006)
44 / 201

What we want to do with grammars How to get grammars to do it Derivations and representations Information-theoretic complexity metrics

Grammar intersection example (simple)
1.0 S → NP VP
0.3 NP → John
0.7 NP → Mary
0.2 VP → ran
0.5 VP → V NP
0.3 VP → V S
0.4 V → believed
0.6 V → knew

0 1 2
Mary believed

*

1.0 S0,2 → NP0,1 VP1,2
0.7 NP0,1 → Mary
0.5 VP1,2 → V1,2 NP2,2
0.3 VP1,2 → V1,2 S2,2
0.4 V1,2 → believed

1.0 S2,2 → NP2,2 VP2,2
0.3 NP2,2 → John
0.7 NP2,2 → Mary
0.2 VP2,2 → ran
0.5 VP2,2 → V2,2 NP2,2
0.3 VP2,2 → V2,2 S2,2
0.4 V2,2 → believed
0.6 V2,2 → knew

S0,2

VP1,2

NP2,2V1,2
believed

NP0,1
Mary

S0,2

VP1,2

S2,2V1,2
believed

NP0,1
Mary

NB: Total weight in this grammar is not one! (What is it? Start symbol is S0,2.)
Each derivation has the weight “it” had in the original grammar.

45 / 201

What we want to do with grammars How to get grammars to do it Derivations and representations Information-theoretic complexity metrics

Grammar intersection example (simple)
1.0 S → NP VP
0.3 NP → John
0.7 NP → Mary
0.2 VP → ran
0.5 VP → V NP
0.3 VP → V S
0.4 V → believed
0.6 V → knew

0 1 2
Mary believed

*

1.0 S0,2 → NP0,1 VP1,2
0.7 NP0,1 → Mary
0.5 VP1,2 → V1,2 NP2,2
0.3 VP1,2 → V1,2 S2,2
0.4 V1,2 → believed

1.0 S2,2 → NP2,2 VP2,2
0.3 NP2,2 → John
0.7 NP2,2 → Mary
0.2 VP2,2 → ran
0.5 VP2,2 → V2,2 NP2,2
0.3 VP2,2 → V2,2 S2,2
0.4 V2,2 → believed
0.6 V2,2 → knew

S0,2

VP1,2

NP2,2V1,2
believed

NP0,1
Mary

S0,2

VP1,2

S2,2V1,2
believed

NP0,1
Mary

NB: Total weight in this grammar is not one! (What is it? Start symbol is S0,2.)
Each derivation has the weight “it” had in the original grammar.

45 / 201

What we want to do with grammars How to get grammars to do it Derivations and representations Information-theoretic complexity metrics

Grammar intersection example (more complicated)

S → NP VP V → fish
VP → V NP V → damaged
NP → DET DET → these
NP → DET N N → fish
NP → ADJ N ADJ → damaged

These fish damaged . . .

S

VP

. . .V
damaged

NP

N
fish

DET
these

S

VP

NP

. . .ADJ
damaged

V
fish

NP

DET
these

46 / 201

What we want to do with grammars How to get grammars to do it Derivations and representations Information-theoretic complexity metrics

Grammar intersection example (more complicated)

S → NP VP V → fish
VP → V NP V → damaged
NP → DET DET → these
NP → DET N N → fish
NP → ADJ N ADJ → damaged 0 1 2 3

these fish damaged

*

S0,3 → NP0,2 VP2,3
NP0,2 → DET0,1 N1,2
VP2,3 → V2,3 NP3,3
DET0,1 → these
N1,2 → fish
V2,3 → damaged

S0,3 → NP0,1 VP1,3
NP0,1 → DET0,1
VP1,3 → V1,2 NP2,3
NP2,3 → ADJ2,3 N3,3
V1,2 → fish
ADJ2,3 → damaged

NP3,3 → ADJ3,3 N3,3
NP3,3 → DET3,3 N3,3
NP3,3 → DET3,3
N3,3 → fish
DET3,3 → these
ADJ3,3 → damaged

S0,3

VP2,3

NP3,3V2,3
damaged

NP0,2

N1,2
fish

DET0,1
these

S0,3

VP1,3

NP2,3

N3,3ADJ2,3
damaged

V1,2
fish

NP0,1

DET0,1
these

47 / 201

What we want to do with grammars How to get grammars to do it Derivations and representations Information-theoretic complexity metrics

Intersection grammars
1.0 S → NP VP
0.3 NP → John
0.7 NP → Mary
0.2 VP → ran
0.5 VP → V NP
0.3 VP → V S
0.4 V → believed
0.6 V → knew

∩
0 1 2

Mary believed

*

= G2

1.0 S → NP VP
0.3 NP → John
0.7 NP → Mary
0.2 VP → ran
0.5 VP → V NP
0.3 VP → V S
0.4 V → believed
0.6 V → knew

∩
0 1 2 3

Mary believed John

*

= G3

surprisal at ‘John’ = − log P(W3 = John | W1 = Mary,W2 = believed)

= − log
total weight in G3

total weight in G2

= − log
0.0672
0.224

= 1.74

(Lang 1988, Billot and Lang 1989, Hale 2006)
48 / 201

What we want to do with grammars How to get grammars to do it Derivations and representations Information-theoretic complexity metrics

Computing sum of weights in a grammar (“partition function”)

Z(A) =
∑
A→α

(
p(A→ α) · Z(α)

)
Z(ε) = 1

Z(aβ) = Z(β)

Z(Bβ) = Z(B) · Z(β) where β 6= ε

(Nederhof and Satta 2008)

1.0 S → NP VP
0.3 NP → John
0.7 NP → Mary
0.2 VP → ran
0.5 VP → V NP
0.4 V → believed
0.6 V → knew

Z(V) = 0.4 + 0.6 = 1.0
Z(NP) = 0.3 + 0.7 = 1.0
Z(VP) = 0.2 + (0.5 · Z(V) · Z(NP))

= 0.2 + (0.5 · 1.0 · 1.0) = 0.7
Z(S) = 1.0 · Z(NP) · Z(VP)

= 0.7

1.0 S → NP VP
0.3 NP → John
0.7 NP → Mary
0.2 VP → ran
0.5 VP → V NP
0.3 VP → V S
0.4 V → believed
0.6 V → knew

Z(V) = 0.4 + 0.6 = 1.0
Z(NP) = 0.3 + 0.7 = 1.0
Z(VP) = 0.2 + (0.5 · Z(V) · Z(NP)) + (0.3 · Z(V) · Z(S))
Z(S) = 1.0 · Z(NP) · Z(VP)

49 / 201

What we want to do with grammars How to get grammars to do it Derivations and representations Information-theoretic complexity metrics

Computing sum of weights in a grammar (“partition function”)

Z(A) =
∑
A→α

(
p(A→ α) · Z(α)

)
Z(ε) = 1

Z(aβ) = Z(β)

Z(Bβ) = Z(B) · Z(β) where β 6= ε

(Nederhof and Satta 2008)

1.0 S → NP VP
0.3 NP → John
0.7 NP → Mary
0.2 VP → ran
0.5 VP → V NP
0.4 V → believed
0.6 V → knew

Z(V) = 0.4 + 0.6 = 1.0
Z(NP) = 0.3 + 0.7 = 1.0
Z(VP) = 0.2 + (0.5 · Z(V) · Z(NP))

= 0.2 + (0.5 · 1.0 · 1.0) = 0.7
Z(S) = 1.0 · Z(NP) · Z(VP)

= 0.7

1.0 S → NP VP
0.3 NP → John
0.7 NP → Mary
0.2 VP → ran
0.5 VP → V NP
0.3 VP → V S
0.4 V → believed
0.6 V → knew

Z(V) = 0.4 + 0.6 = 1.0
Z(NP) = 0.3 + 0.7 = 1.0
Z(VP) = 0.2 + (0.5 · Z(V) · Z(NP)) + (0.3 · Z(V) · Z(S))
Z(S) = 1.0 · Z(NP) · Z(VP)

49 / 201

What we want to do with grammars How to get grammars to do it Derivations and representations Information-theoretic complexity metrics

Things to know

Technical facts about CFGs:

Can intersect with a “prefix FSA”
Can compute the total weight (and the entropy)

More generally:

Intersecting a grammar with a prefix produces a new grammar which is a
representation of the comprehender’s sentence-medial state
So we can construct a sequence of grammars which represents the
comprehender’s sequence of knowledge-states
Ask “what changes” (or “how much changes”, etc.) at each step

The general approach is compatible with many very different grammar formalisms
(any grammar formalism?) — provided the technical tricks can be pulled off.

(Hale 2006)
50 / 201

What we want to do with grammars How to get grammars to do it Derivations and representations Information-theoretic complexity metrics

Things to know

Technical facts about CFGs:

Can intersect with a “prefix FSA”
Can compute the total weight (and the entropy)

More generally:

Intersecting a grammar with a prefix produces a new grammar which is a
representation of the comprehender’s sentence-medial state
So we can construct a sequence of grammars which represents the
comprehender’s sequence of knowledge-states
Ask “what changes” (or “how much changes”, etc.) at each step

The general approach is compatible with many very different grammar formalisms
(any grammar formalism?) — provided the technical tricks can be pulled off.

(Hale 2006)
50 / 201

What we want to do with grammars How to get grammars to do it Derivations and representations Information-theoretic complexity metrics

Looking ahead

Wouldn’t it be nice if we could do all that for minimalist syntax?

The average syntax paper shows illustrative derivations, not a fragment.

What would we need?

An explicit characterization of the set of possible derivations
A way to “intersect” that with a prefix
A way to define probability distributions over the possibilities

This will require certain idealizations. (But what’s new?)

51 / 201

Part 1: Grammars and cognitive hypotheses
What is a grammar?
What can grammars do?
Concrete illustration of a target: Surprisal

Parts 2–4: Assembling the pieces
Minimalist Grammars (MGs)
MGs and MCFGs
Probabilities on MGs

Part 5: Learning and wrap-up
Something slightly different: Learning model
Recap and open questions

Sharpening the empirical claims of generative syntax
through formalization

Tim Hunter — ESSLLI, August 2015

Part 2

Minimalist Grammars

Notation and Basics Example fragment Loops and “derivational state” Derivation trees

Outline

5 Notation and Basics

6 Example fragment

7 Loops and “derivational state”

8 Derivation trees

54 / 201

Notation and Basics Example fragment Loops and “derivational state” Derivation trees

Outline

5 Notation and Basics

6 Example fragment

7 Loops and “derivational state”

8 Derivation trees

55 / 201

Notation and Basics Example fragment Loops and “derivational state” Derivation trees

Wait a minute!

“I thought the whole point was deciding between candidate sets of primitive
derivational operations! Isn’t it begging the question to set everything in stone at
the beginning like this?”

We’re not setting this in stone — we will look at alternatives.
But we need a concrete starting point so that we can make the differences
concrete.
What’s coming up is meant as a relatively neutral/“mainstream” starting
point.

56 / 201

Notation and Basics Example fragment Loops and “derivational state” Derivation trees

Wait a minute!

“I thought the whole point was deciding between candidate sets of primitive
derivational operations! Isn’t it begging the question to set everything in stone at
the beginning like this?”

We’re not setting this in stone — we will look at alternatives.
But we need a concrete starting point so that we can make the differences
concrete.
What’s coming up is meant as a relatively neutral/“mainstream” starting
point.

56 / 201

Notation and Basics Example fragment Loops and “derivational state” Derivation trees

Minimalist Grammars

Defining a grammar in the MG formalism is defining a set Lex of lexical items

A lexical item is a string with a sequence of features.
e.g. like :: =d =d v, mary :: d, who :: d -wh
Generates the closure of the Lex ⊂ Expr under two derivational operations:

merge : Expr × Expr partial−−−−→ Expr
move : Expr partial−−−−→ Expr

Each feature encodes a requirement that must be met by applying a particular
derivational operation.

merge checks =f and f
move checks +f and -f

A derived expression is complete when it has only a single feature remaining
unchecked.

57 / 201

Notation and Basics Example fragment Loops and “derivational state” Derivation trees

Merge and move

=f α
f β

merge

β

α

<

=f α f β

merge

β α

>

+f α

-f β

move αβ

>

58 / 201

Notation and Basics Example fragment Loops and “derivational state” Derivation trees

Examples

merge (eat :: =d v, it :: d) =
<

eat :: v it ::

merge (the :: =n d, book :: n) =

<

the :: d book ::

merge

(
eat :: =d v,

<

the :: d book ::

)
=

<

eat :: v <

the :: book ::

merge (which :: =n d -wh, book :: n) =

<

which :: d -wh book ::

merge

(
eat :: =d v,

<

which :: d -wh book ::

)
=

<

eat :: v <

which :: -wh book ::

59 / 201

Notation and Basics Example fragment Loops and “derivational state” Derivation trees

Examples

merge

will :: =v =d t,

<

eat :: v <

which :: -wh book ::

 =

<

will :: =d t <

eat :: <

which :: -wh book ::

merge


<

will :: =d t <

eat :: <

which :: -wh book ::

, John :: d

 =

>

John :: <

will :: t <

eat :: <

which :: -wh book ::

60 / 201

Notation and Basics Example fragment Loops and “derivational state” Derivation trees

Examples

merge

ε :: =t +wh c,

>

John :: <

will :: t <

eat :: <

which :: -wh book ::

 =

<

ε :: +wh c >

John :: <

will :: <

eat :: <

which :: -wh book ::

move



<

ε :: +wh c >

John :: <

will :: <

eat :: <

which :: -wh book ::


=

>

<

which :: book ::

<

ε :: c >

John :: <

will :: <

eat ::

61 / 201

Notation and Basics Example fragment Loops and “derivational state” Derivation trees

Merge and move

=f α
f β

merge

β

α

<

=f α f β

merge

β α

>

+f α

-f β

move αβ

>

62 / 201

Notation and Basics Example fragment Loops and “derivational state” Derivation trees

Definitions

merge
(
e1[=f α], e2[f β]

)
=

{
[< e1[α] e2[β]] if e1[=f α] ∈ Lex
[> e2[β] e1[α]] otherwise

move
(
e1[+f α]

)
= [> e2[β] e′1[α]]
where e2[-f β] is a unique subtree of e1[+f α]
and e′1 is like e1 but with e2[-f β] replaced by an empty leaf node

63 / 201

Notation and Basics Example fragment Loops and “derivational state” Derivation trees

Shortest Move Constraint

How do we know which subtree should be displaced when we apply move?

By stipulation, there can only ever be one candidate. This is the Shortest Move
Constraint (SMC).

move



<

ε :: +wh c >

who :: -wh <

ate :: what :: -wh


is undefined

Q: Multiple wh-movement?
A: Clustering!

64 / 201

Notation and Basics Example fragment Loops and “derivational state” Derivation trees

Shortest Move Constraint

How do we know which subtree should be displaced when we apply move?

By stipulation, there can only ever be one candidate. This is the Shortest Move
Constraint (SMC).

move



<

ε :: +wh c >

who :: -wh <

ate :: what :: -wh


is undefined

Q: Multiple wh-movement?
A: Clustering!

64 / 201

Notation and Basics Example fragment Loops and “derivational state” Derivation trees

(Gärtner and Michaelis 2010) 65 / 201

Notation and Basics Example fragment Loops and “derivational state” Derivation trees

Notation

=d v or =dp vp?

Categorial grammar:

Primitive symbols for “complete” things, e.g. S, NP
Derived symbols for “incomplete” things, e.g. S\NP
Lexical category can specify “what’s missing”

Traditional X-bar theory:

Primitive symbols for “incomplete” things, e.g. V, T
Derived symbols for “complete” things, e.g. VP, TP (= V′′, T′′)
Separate subcategorization info specifies “what’s missing”

MGs:

Primitive symbols for “complete” things, like CG
So t means “a complete projection of T”, not “a T head”

66 / 201

Notation and Basics Example fragment Loops and “derivational state” Derivation trees

Notation

=d v or =dp vp?

Categorial grammar:

Primitive symbols for “complete” things, e.g. S, NP
Derived symbols for “incomplete” things, e.g. S\NP
Lexical category can specify “what’s missing”

Traditional X-bar theory:

Primitive symbols for “incomplete” things, e.g. V, T
Derived symbols for “complete” things, e.g. VP, TP (= V′′, T′′)
Separate subcategorization info specifies “what’s missing”

MGs:

Primitive symbols for “complete” things, like CG
So t means “a complete projection of T”, not “a T head”

66 / 201

Notation and Basics Example fragment Loops and “derivational state” Derivation trees

Notation

=d v or =dp vp?

Categorial grammar:

Primitive symbols for “complete” things, e.g. S, NP
Derived symbols for “incomplete” things, e.g. S\NP
Lexical category can specify “what’s missing”

Traditional X-bar theory:

Primitive symbols for “incomplete” things, e.g. V, T
Derived symbols for “complete” things, e.g. VP, TP (= V′′, T′′)
Separate subcategorization info specifies “what’s missing”

MGs:

Primitive symbols for “complete” things, like CG
So t means “a complete projection of T”, not “a T head”

66 / 201

Notation and Basics Example fragment Loops and “derivational state” Derivation trees

Notation

=d v or =dp vp?

Categorial grammar:

Primitive symbols for “complete” things, e.g. S, NP
Derived symbols for “incomplete” things, e.g. S\NP
Lexical category can specify “what’s missing”

Traditional X-bar theory:

Primitive symbols for “incomplete” things, e.g. V, T
Derived symbols for “complete” things, e.g. VP, TP (= V′′, T′′)
Separate subcategorization info specifies “what’s missing”

MGs:

Primitive symbols for “complete” things, like CG
So t means “a complete projection of T”, not “a T head”

66 / 201

Notation and Basics Example fragment Loops and “derivational state” Derivation trees

Notation comparison

T
will

VP

V
eat

DP

D
which
-wh

N
book

will :: =v =d t

<

eat :: v <

which :: -wh book ::

Conventional notation

MG notation

‘eat which book’ is a VP VP label on root

v on ‘eat’

‘which book’ must move -wh on ‘which’

-wh on ‘which’

‘will’ combines with a VP implicit

=v on ‘will’

67 / 201

Notation and Basics Example fragment Loops and “derivational state” Derivation trees

Notation comparison

T
will

VP

V
eat

DP

D
which
-wh

N
book

will :: =v =d t

<

eat :: v <

which :: -wh book ::

Conventional notation MG notation
‘eat which book’ is a VP VP label on root v on ‘eat’
‘which book’ must move -wh on ‘which’ -wh on ‘which’
‘will’ combines with a VP implicit =v on ‘will’

67 / 201

Notation and Basics Example fragment Loops and “derivational state” Derivation trees

Outline

5 Notation and Basics

6 Example fragment

7 Loops and “derivational state”

8 Derivation trees

68 / 201

Notation and Basics Example fragment Loops and “derivational state” Derivation trees

A Minimalist Grammar

cake :: d what :: d -wh
John :: d -k who :: d -k -wh
eat :: =d =d v ε :: =t +wh c
will :: =v +k t ε :: =t c

69 / 201

Notation and Basics Example fragment Loops and “derivational state” Derivation trees

A Minimalist Grammar

cake :: d what :: d -wh
John :: d -k who :: d -k -wh
eat :: =d =d v ε :: =t +wh c
will :: =v +k t ε :: =t c

>

<

cake ::eat :: v

John :: -k

<

>

<

cake ::eat ::

John :: -k

will :: +k t

>

<

>

<

cake ::eat ::

will :: t

John ::

69 / 201

Notation and Basics Example fragment Loops and “derivational state” Derivation trees

A Minimalist Grammar

cake :: d what :: d -wh
John :: d -k who :: d -k -wh
eat :: =d =d v ε :: =t +wh c
will :: =v +k t ε :: =t c

>

<

>

<

what :: -wheat ::

will :: t

John ::

<

>

<

>

<

what :: -wheat ::

will ::

John ::

ε :: +wh c

>

<

>

<

>

<

eat ::

will ::

John ::

ε :: c

what ::

69 / 201

Notation and Basics Example fragment Loops and “derivational state” Derivation trees

A Minimalist Grammar

cake :: d what :: d -wh
John :: d -k who :: d -k -wh
eat :: =d =d v ε :: =t +wh c
will :: =v +k t ε :: =t c

<

>

<

cake ::eat ::

who :: -k -wh

will :: +k t

>

<

>

<

cake ::eat ::

will :: t

who :: -wh

>

<

>

<

>

<

cake ::eat ::

will ::

ε :: c

who ::

69 / 201

Notation and Basics Example fragment Loops and “derivational state” Derivation trees

A Minimalist Grammar . . . which overgenerates

cake :: d what :: d -wh
John :: d -k who :: d -k -wh
eat :: =d =d v ε :: =t +wh c
will :: =v +k t ε :: =t c

70 / 201

Notation and Basics Example fragment Loops and “derivational state” Derivation trees

A Minimalist Grammar . . . which overgenerates

cake :: d what :: d -wh
John :: d -k who :: d -k -wh
eat :: =d =d v ε :: =t +wh c
will :: =v +k t ε :: =t c

>

<

John :: -keat :: v

cake ::

<

>

<

John :: -keat ::

cake ::

will :: +k t

>

<

>

<

eat ::

cake ::

will :: t

John ::

70 / 201

Notation and Basics Example fragment Loops and “derivational state” Derivation trees

A Minimalist Grammar . . . which overgenerates

cake :: d what :: d -wh
John :: d -k who :: d -k -wh
eat :: =d =d v ε :: =t +wh c
will :: =v +k t ε :: =t c

<

>

<

who :: -k -wheat ::

cake ::

will :: +k t

>

<

>

<

>

<

eat ::

cake ::

will ::

ε :: c

who ::

70 / 201

Notation and Basics Example fragment Loops and “derivational state” Derivation trees

A Minimalist Grammar . . . which overgenerates

cake :: d what :: d -wh
John :: d -k who :: d -k -wh
eat :: =d =d v ε :: =t +wh c
will :: =v +k t ε :: =t c

<

>

<

John :: -keat ::

what :: -wh

will :: +k t

>

<

>

<

>

<

eat ::

will ::

John ::

ε :: c

what ::

70 / 201

Notation and Basics Example fragment Loops and “derivational state” Derivation trees

A Minimalist Grammar . . . which overgenerates

cake :: d what :: d -wh
John :: d -k who :: d -k -wh
eat :: =d =d v ε :: =t +wh c
will :: =v +k t ε :: =t c

John will eat cake John will cake eat
what John will eat what John will eat
who will eat cake who will cake eat

S → NP VP VP → V NP
NP → John VP → runs
NP → Mary VP → walks

V → loves

John runs Mary runs
John walks Mary walks
John loves John Mary loves John
John loves Mary Mary loves Mary

71 / 201

Notation and Basics Example fragment Loops and “derivational state” Derivation trees

A Minimalist Grammar . . . which overgenerates

cake :: d what :: d -wh
John :: d -k who :: d -k -wh
eat :: =d =d v ε :: =t +wh c
will :: =v +k t ε :: =t c

John will eat cake John will cake eat
what John will eat what John will eat
who will eat cake who will cake eat

S → NP VP VP → V NP
NP → John VP → runs
NP → Mary VP → walks

V → loves

John runs Mary runs
John walks Mary walks
John loves John Mary loves John
John loves Mary Mary loves Mary

71 / 201

Notation and Basics Example fragment Loops and “derivational state” Derivation trees

First solution: covert movement/agree

cake :: d -k what :: d -k -wh
John :: d -k who :: d -k -wh
eat :: =d +k̄ =d v ε :: =t +wh c
will :: =v +k t ε :: =t c

<

cake :: -keat :: +k̄ =d v

>

<

cake ::eat :: =d v

>

>

<

cake ::eat :: v

John :: -k

>

<

>

>

<

cake ::eat ::

will :: t

John ::

Note order of features on eat!

72 / 201

Notation and Basics Example fragment Loops and “derivational state” Derivation trees

First solution: covert movement/agree

cake :: d -k what :: d -k -wh
John :: d -k who :: d -k -wh
eat :: =d +k̄ =d v ε :: =t +wh c
will :: =v +k t ε :: =t c

<

cake :: -keat :: +k̄ =d v

>

<

cake ::eat :: =d v

>

>

<

cake ::eat :: v

John :: -k

>

<

>

>

<

cake ::eat ::

will :: t

John ::

Note order of features on eat!

72 / 201

Notation and Basics Example fragment Loops and “derivational state” Derivation trees

First solution: covert movement/agree

cake :: d -k what :: d -k -wh
John :: d -k who :: d -k -wh
eat :: =d +k̄ =d v ε :: =t +wh c
will :: =v +k t ε :: =t c

<

cake :: -keat :: +k̄ =d v

>

<

cake ::eat :: =d v

>

>

<

cake ::eat :: v

John :: -k

>

<

>

>

<

cake ::eat ::

will :: t

John ::

Note order of features on eat!

72 / 201

Notation and Basics Example fragment Loops and “derivational state” Derivation trees

Second solution

Separate d into subj and obj

cake :: obj what :: obj -wh
John :: subj -k who :: subj -k -wh
eat :: =obj =subj v ε :: =t +wh c
will :: =v +k t ε :: =t c

Problem “solved”:

John will eat cake
what John will eat
who will eat cake

73 / 201

Notation and Basics Example fragment Loops and “derivational state” Derivation trees

Outline

5 Notation and Basics

6 Example fragment

7 Loops and “derivational state”

8 Derivation trees

74 / 201

Notation and Basics Example fragment Loops and “derivational state” Derivation trees

Adding embedded clauses

cake :: obj what :: obj -wh think :: =c =subj v
John :: subj -k who :: subj -k -wh ask :: =q =subj v
eat :: =obj =subj v ε :: =t +wh q Mary :: subj -k
will :: =v +k t ε :: =t c

John will eat cake Mary will think John will eat cake . . .
what John will eat what Mary will think John will eat . . .
who will eat cake who Mary will think will eat cake . . .

<

John will eat cake

ε :: c

<

<

John will eat cake

ε ::

think :: =subj v

>

<

<

John will eat cake

ε ::

think :: v

Mary :: -k

75 / 201

Notation and Basics Example fragment Loops and “derivational state” Derivation trees

Adding embedded clauses

cake :: obj what :: obj -wh think :: =c =subj v
John :: subj -k who :: subj -k -wh ask :: =q =subj v
eat :: =obj =subj v ε :: =t +wh q Mary :: subj -k
will :: =v +k t ε :: =t c

John will eat cake Mary will think John will eat cake . . .
what John will eat what Mary will think John will eat . . .
who will eat cake who Mary will think will eat cake . . .

<

John will eat cake

ε :: c

<

<

John will eat cake

ε ::

think :: =subj v

>

<

<

John will eat cake

ε ::

think :: v

Mary :: -k

75 / 201

Notation and Basics Example fragment Loops and “derivational state” Derivation trees

Adding embedded clauses

cake :: obj what :: obj -wh think :: =c =subj v
John :: subj -k who :: subj -k -wh ask :: =q =subj v
eat :: =obj =subj v ε :: =t +wh q Mary :: subj -k
will :: =v +k t ε :: =t c

John will eat cake Mary will think John will eat cake . . .
what John will eat what Mary will think John will eat . . .
who will eat cake who Mary will think will eat cake . . .

<

John will eat cake

ε :: c

<

<

John will eat cake

ε ::

think :: =subj v

>

<

<

John will eat cake

ε ::

think :: v

Mary :: -k

75 / 201

Notation and Basics Example fragment Loops and “derivational state” Derivation trees

Reminder: “Loops” in a CFG
S → NP VP VP → runs
NP → Det N′ Det → the
N′ → N N → dog
N′ → N PP N → cat
PP → P NP P → near

S

VP
runs

NP

N′

N
cat

Det
the

S

VP
runs

NP

N′

PP

NP

N′

N
cat

Det
the

P
near

N
dog

Det
the

76 / 201

Notation and Basics Example fragment Loops and “derivational state” Derivation trees

Which extensions create “loops”?

Starting point:
TP

T′

will eat cake

DP
who
-wh

77 / 201

Notation and Basics Example fragment Loops and “derivational state” Derivation trees

A simple, non-looping completion

>

<

>

<

>

<

cake ::eat ::

will :: t

who :: -wh

ε :: +wh q

who ::

t, -wh

+wh q, -wh

q

78 / 201

Notation and Basics Example fragment Loops and “derivational state” Derivation trees

A simple, non-looping completion

>

<

>

<

>

<

cake ::eat ::

will ::

who :: -wh

ε :: +wh q

who ::

t, -wh

+wh q, -wh

q

78 / 201

Notation and Basics Example fragment Loops and “derivational state” Derivation trees

A simple, non-looping completion

>

<

>

<

>

<

cake ::eat ::

will ::

ε :: q

who ::

t, -wh

+wh q, -wh

q

78 / 201

Notation and Basics Example fragment Loops and “derivational state” Derivation trees

Which extensions create “loops”?

Starting point:
TP

T′

will eat cake

DP
who
-wh

79 / 201

Notation and Basics Example fragment Loops and “derivational state” Derivation trees

Which extensions create “loops”?

Starting point:
TP

T′

will eat cake

DP
who
-wh

TP

T′

VP

V′

CP

TP

T′

will eat cake

DP
who
-wh

C

V
think

t

T
will

DP
Mary

79 / 201

Notation and Basics Example fragment Loops and “derivational state” Derivation trees

Extending with Mary will think . . .

>

<

>

<

<

>

<

eat cake

will :: t

who :: -wh

ε :: c

think :: =subj v

Mary :: -k

will :: +k t

Mary ::

t, -wh

c, -wh

=subj v, -wh

v, -k, -wh

+k t, -k, -wh

t, -wh

80 / 201

Notation and Basics Example fragment Loops and “derivational state” Derivation trees

Extending with Mary will think . . .

>

<

>

<

<

>

<

eat cake

will ::

who :: -wh

ε :: c

think :: =subj v

Mary :: -k

will :: +k t

Mary ::

t, -wh

c, -wh

=subj v, -wh

v, -k, -wh

+k t, -k, -wh

t, -wh

80 / 201

Notation and Basics Example fragment Loops and “derivational state” Derivation trees

Extending with Mary will think . . .

>

<

>

<

<

>

<

eat cake

will ::

who :: -wh

ε ::

think :: =subj v

Mary :: -k

will :: +k t

Mary ::

t, -wh

c, -wh

=subj v, -wh

v, -k, -wh

+k t, -k, -wh

t, -wh

80 / 201

Notation and Basics Example fragment Loops and “derivational state” Derivation trees

Extending with Mary will think . . .

>

<

>

<

<

>

<

eat cake

will ::

who :: -wh

ε ::

think :: v

Mary :: -k

will :: +k t

Mary ::

t, -wh

c, -wh

=subj v, -wh

v, -k, -wh

+k t, -k, -wh

t, -wh

80 / 201

Notation and Basics Example fragment Loops and “derivational state” Derivation trees

Extending with Mary will think . . .

>

<

>

<

<

>

<

eat cake

will ::

who :: -wh

ε ::

think ::

Mary :: -k

will :: +k t

Mary ::

t, -wh

c, -wh

=subj v, -wh

v, -k, -wh

+k t, -k, -wh

t, -wh

80 / 201

Notation and Basics Example fragment Loops and “derivational state” Derivation trees

Extending with Mary will think . . .

>

<

>

<

<

>

<

eat cake

will ::

who :: -wh

ε ::

think ::

will :: t

Mary ::

t, -wh

c, -wh

=subj v, -wh

v, -k, -wh

+k t, -k, -wh

t, -wh

80 / 201

Notation and Basics Example fragment Loops and “derivational state” Derivation trees

Which extensions create “loops”?

Starting point:
TP

T′

will eat cake

DP
who
-wh

TP

T′

VP

V′

CP

TP

T′

will eat cake

DP
who
-wh

C

V
think

t

T
will

DP
Mary

81 / 201

Notation and Basics Example fragment Loops and “derivational state” Derivation trees

Which extensions create “loops”?

Starting point:
TP

T′

will eat cake

DP
who
-wh

TP

T′

VP

V′

CP

TP

T′

will eat cake

DP
who
-wh

C

V
think

t

T
will

DP
Mary

TP

T′

VP

V′

CP

C′

TP

T′

will eat cake

t

C

DP
who

V
ask

t

T
will

DP
Mary

81 / 201

Notation and Basics Example fragment Loops and “derivational state” Derivation trees

Extending with Mary will ask . . .
>

<

>

<

>

<

>

<

eat cake

will :: t

who :: -wh

ε :: +wh q

who ::

ask :: =subj v

Mary :: -k

will :: +k t

Mary ::

t, -wh

+wh q, -wh

q

=subj v

v, -k

+k t, -k

t

82 / 201

Notation and Basics Example fragment Loops and “derivational state” Derivation trees

Extending with Mary will ask . . .
>

<

>

<

>

<

>

<

eat cake

will ::

who :: -wh

ε :: +wh q

who ::

ask :: =subj v

Mary :: -k

will :: +k t

Mary ::

t, -wh

+wh q, -wh

q

=subj v

v, -k

+k t, -k

t

82 / 201

Notation and Basics Example fragment Loops and “derivational state” Derivation trees

Extending with Mary will ask . . .
>

<

>

<

>

<

>

<

eat cake

will ::

ε :: q

who ::

ask :: =subj v

Mary :: -k

will :: +k t

Mary ::

t, -wh

+wh q, -wh

q

=subj v

v, -k

+k t, -k

t

82 / 201

Notation and Basics Example fragment Loops and “derivational state” Derivation trees

Extending with Mary will ask . . .
>

<

>

<

>

<

>

<

eat cake

will ::

ε ::

who ::

ask :: =subj v

Mary :: -k

will :: +k t

Mary ::

t, -wh

+wh q, -wh

q

=subj v

v, -k

+k t, -k

t

82 / 201

Notation and Basics Example fragment Loops and “derivational state” Derivation trees

Extending with Mary will ask . . .
>

<

>

<

>

<

>

<

eat cake

will ::

ε ::

who ::

ask :: v

Mary :: -k

will :: +k t

Mary ::

t, -wh

+wh q, -wh

q

=subj v

v, -k

+k t, -k

t

82 / 201

Notation and Basics Example fragment Loops and “derivational state” Derivation trees

Extending with Mary will ask . . .
>

<

>

<

>

<

>

<

eat cake

will ::

ε ::

who ::

ask ::

Mary :: -k

will :: +k t

Mary ::

t, -wh

+wh q, -wh

q

=subj v

v, -k

+k t, -k

t

82 / 201

Notation and Basics Example fragment Loops and “derivational state” Derivation trees

Extending with Mary will ask . . .
>

<

>

<

>

<

>

<

eat cake

will ::

ε ::

who ::

ask ::

will :: t

Mary ::

t, -wh

+wh q, -wh

q

=subj v

v, -k

+k t, -k

t

82 / 201

Notation and Basics Example fragment Loops and “derivational state” Derivation trees

Which extensions create “loops”?

Starting point:
TP

T′

will eat cake

DP
who
-wh

TP

T′

VP

V′

CP

TP

T′

will eat cake

DP
who
-wh

C

V
think

t

T
will

DP
Mary

TP

T′

VP

V′

CP

C′

TP

T′

will eat cake

t

C

DP
who

V
ask

t

T
will

DP
Mary

83 / 201

Notation and Basics Example fragment Loops and “derivational state” Derivation trees

Which extensions create “loops”?

Starting point:
TP

T′

will eat cake

DP
who
-wh

TP

T′

VP

V′

CP

TP

T′

will eat cake

DP
who
-wh

C

V
think

t

T
will

DP
Mary

TP

T′

VP

V′

CP

C′

TP

T′

will eat cake

t

C

DP
who

V
ask

t

T
will

DP
Mary

TP

T′

VP

V′

CP

C′

TP

T′

will eat cake

t

C

DP
who

V
ask

t

T
will

DP
who
-wh

83 / 201

Notation and Basics Example fragment Loops and “derivational state” Derivation trees

Extending with who will ask . . .
>

<

>

<

>

<

>

<

eat cake

will :: t

who :: -wh

ε :: +wh q

who ::

ask :: =subj v

who :: -k -wh

will :: +k t

who :: -wh

t, -wh

+wh q, -wh

q

=subj v

v, -k -wh

+k t, -k -wh

t, -wh

84 / 201

Notation and Basics Example fragment Loops and “derivational state” Derivation trees

Extending with who will ask . . .
>

<

>

<

>

<

>

<

eat cake

will ::

who :: -wh

ε :: +wh q

who ::

ask :: =subj v

who :: -k -wh

will :: +k t

who :: -wh

t, -wh

+wh q, -wh

q

=subj v

v, -k -wh

+k t, -k -wh

t, -wh

84 / 201

Notation and Basics Example fragment Loops and “derivational state” Derivation trees

Extending with who will ask . . .
>

<

>

<

>

<

>

<

eat cake

will ::

ε :: q

who ::

ask :: =subj v

who :: -k -wh

will :: +k t

who :: -wh

t, -wh

+wh q, -wh

q

=subj v

v, -k -wh

+k t, -k -wh

t, -wh

84 / 201

Notation and Basics Example fragment Loops and “derivational state” Derivation trees

Extending with who will ask . . .
>

<

>

<

>

<

>

<

eat cake

will ::

ε ::

who ::

ask :: =subj v

who :: -k -wh

will :: +k t

who :: -wh

t, -wh

+wh q, -wh

q

=subj v

v, -k -wh

+k t, -k -wh

t, -wh

84 / 201

Notation and Basics Example fragment Loops and “derivational state” Derivation trees

Extending with who will ask . . .
>

<

>

<

>

<

>

<

eat cake

will ::

ε ::

who ::

ask :: v

who :: -k -wh

will :: +k t

who :: -wh

t, -wh

+wh q, -wh

q

=subj v

v, -k -wh

+k t, -k -wh

t, -wh

84 / 201

Notation and Basics Example fragment Loops and “derivational state” Derivation trees

Extending with who will ask . . .
>

<

>

<

>

<

>

<

eat cake

will ::

ε ::

who ::

ask ::

who :: -k -wh

will :: +k t

who :: -wh

t, -wh

+wh q, -wh

q

=subj v

v, -k -wh

+k t, -k -wh

t, -wh

84 / 201

Notation and Basics Example fragment Loops and “derivational state” Derivation trees

Extending with who will ask . . .
>

<

>

<

>

<

>

<

eat cake

will ::

ε ::

who ::

ask ::

will :: t

who :: -wh

t, -wh

+wh q, -wh

q

=subj v

v, -k -wh

+k t, -k -wh

t, -wh

84 / 201

Notation and Basics Example fragment Loops and “derivational state” Derivation trees

Which extensions create “loops”?

Starting point:
TP

T′

will eat cake

DP
who
-wh

TP

T′

VP

V′

CP

TP

T′

will eat cake

DP
who
-wh

C

V
think

t

T
will

DP
Mary

TP

T′

VP

V′

CP

C′

TP

T′

will eat cake

t

C

DP
who

V
ask

t

T
will

DP
Mary

TP

T′

VP

V′

CP

C′

TP

T′

will eat cake

t

C

DP
who

V
ask

t

T
will

DP
who
-wh

85 / 201

Notation and Basics Example fragment Loops and “derivational state” Derivation trees

Importance of the SMC

The SMC ensures that there is a finite number of types (that we care about).

Recall: move



<

ε :: +wh c >

who :: -wh <

ate :: what :: -wh


is undefined

So move cannot be applied to expressions of type 〈+wh c, -wh, -wh〉.
Nor to expressions of type 〈+wh c, -wh -k, -wh〉.
These are “dead end” types.

An expression of type 〈t, -wh -k, -wh〉 can be the input to merge.
But such types are also bound to lead to dead ends.

So any type of the form 〈α, . . . , -fαi , . . . , -fαj , . . .〉 is not useful.
Thus there are only a finite number of useful types.

(Michaelis 2001)
86 / 201

Notation and Basics Example fragment Loops and “derivational state” Derivation trees

Importance of the SMC

The SMC ensures that there is a finite number of types (that we care about).

Recall: move



<

ε :: +wh c >

who :: -wh <

ate :: what :: -wh


is undefined

So move cannot be applied to expressions of type 〈+wh c, -wh, -wh〉.

Nor to expressions of type 〈+wh c, -wh -k, -wh〉.
These are “dead end” types.

An expression of type 〈t, -wh -k, -wh〉 can be the input to merge.
But such types are also bound to lead to dead ends.

So any type of the form 〈α, . . . , -fαi , . . . , -fαj , . . .〉 is not useful.
Thus there are only a finite number of useful types.

(Michaelis 2001)
86 / 201

Notation and Basics Example fragment Loops and “derivational state” Derivation trees

Importance of the SMC

The SMC ensures that there is a finite number of types (that we care about).

Recall: move



<

ε :: +wh c >

who :: -wh <

ate :: what :: -wh


is undefined

So move cannot be applied to expressions of type 〈+wh c, -wh, -wh〉.
Nor to expressions of type 〈+wh c, -wh -k, -wh〉.
These are “dead end” types.

An expression of type 〈t, -wh -k, -wh〉 can be the input to merge.
But such types are also bound to lead to dead ends.

So any type of the form 〈α, . . . , -fαi , . . . , -fαj , . . .〉 is not useful.
Thus there are only a finite number of useful types.

(Michaelis 2001)
86 / 201

Notation and Basics Example fragment Loops and “derivational state” Derivation trees

Importance of the SMC

The SMC ensures that there is a finite number of types (that we care about).

Recall: move



<

ε :: +wh c >

who :: -wh <

ate :: what :: -wh


is undefined

So move cannot be applied to expressions of type 〈+wh c, -wh, -wh〉.
Nor to expressions of type 〈+wh c, -wh -k, -wh〉.
These are “dead end” types.

An expression of type 〈t, -wh -k, -wh〉 can be the input to merge.

But such types are also bound to lead to dead ends.

So any type of the form 〈α, . . . , -fαi , . . . , -fαj , . . .〉 is not useful.
Thus there are only a finite number of useful types.

(Michaelis 2001)
86 / 201

Notation and Basics Example fragment Loops and “derivational state” Derivation trees

Importance of the SMC

The SMC ensures that there is a finite number of types (that we care about).

Recall: move



<

ε :: +wh c >

who :: -wh <

ate :: what :: -wh


is undefined

So move cannot be applied to expressions of type 〈+wh c, -wh, -wh〉.
Nor to expressions of type 〈+wh c, -wh -k, -wh〉.
These are “dead end” types.

An expression of type 〈t, -wh -k, -wh〉 can be the input to merge.
But such types are also bound to lead to dead ends.

So any type of the form 〈α, . . . , -fαi , . . . , -fαj , . . .〉 is not useful.
Thus there are only a finite number of useful types.

(Michaelis 2001)
86 / 201

Notation and Basics Example fragment Loops and “derivational state” Derivation trees

Importance of the SMC

The SMC ensures that there is a finite number of types (that we care about).

Recall: move



<

ε :: +wh c >

who :: -wh <

ate :: what :: -wh


is undefined

So move cannot be applied to expressions of type 〈+wh c, -wh, -wh〉.
Nor to expressions of type 〈+wh c, -wh -k, -wh〉.
These are “dead end” types.

An expression of type 〈t, -wh -k, -wh〉 can be the input to merge.
But such types are also bound to lead to dead ends.

So any type of the form 〈α, . . . , -fαi , . . . , -fαj , . . .〉 is not useful.
Thus there are only a finite number of useful types.

(Michaelis 2001)
86 / 201

Notation and Basics Example fragment Loops and “derivational state” Derivation trees

Outline

5 Notation and Basics

6 Example fragment

7 Loops and “derivational state”

8 Derivation trees

87 / 201

Notation and Basics Example fragment Loops and “derivational state” Derivation trees

...

ask :: =q =subj v >

<

>

<

<

cakeeat

will ::

ε :: +wh q

who ::

q

<

>

<

<

cakeeat

will ::

who :: -wh

ε :: +wh q

+wh q, -wh

ε :: =t +wh q >

<

<

cakeeat

will :: t

who :: -wh

t, -wh

88 / 201

Notation and Basics Example fragment Loops and “derivational state” Derivation trees

A possible concern

Question
“But hasn’t our eventual derived expression lost the information that ‘cake’ is a
DP?”

Answer
Yes, but only in the same way that John ate cake :: S has also lost this information.

The point is not that we can look at the whole derivation to retrieve that
information, the point is that the information has already done its job.

89 / 201

Notation and Basics Example fragment Loops and “derivational state” Derivation trees

Derivations

John ate cake :: S

ate cake :: VP

cake :: NPate :: V

John :: NP

John :: NP
ate :: (S\NP)/NP cake :: NP

ate cake :: S\NP
John ate cake :: S

John ate cake :: S

ate cake :: S\NP

cake :: NPate :: (S\NP)/NP

John :: NP

90 / 201

Notation and Basics Example fragment Loops and “derivational state” Derivation trees

Derivations

John ate cake :: S

ate cake :: VP

cake :: NPate :: V

John :: NP

John :: NP
ate :: (S\NP)/NP cake :: NP

ate cake :: S\NP
John ate cake :: S

John ate cake :: S

ate cake :: S\NP

cake :: NPate :: (S\NP)/NP

John :: NP

90 / 201

Notation and Basics Example fragment Loops and “derivational state” Derivation trees

A possible concern

Question
“But hasn’t our eventual derived expression lost the information that ‘cake’ is a
DP?”

Answer
Yes, but only in the same way that John ate cake :: S has also lost this information.

The point is not that we can look at the whole derivation to retrieve that
information, the point is that the information has already done its job.

91 / 201

Notation and Basics Example fragment Loops and “derivational state” Derivation trees

...

ask :: =q =subj v >

<

>

<

<

cakeeat

will ::

ε :: +wh q

who ::

q

<

>

<

<

cakeeat

will ::

who :: -wh

ε :: +wh q

+wh q, -wh

ε :: =t +wh q >

<

<

cakeeat

will :: t

who :: -wh

t, -wh

We separate the derivational precedence
relation from the part-whole relation

t, -wh

+k t, -k -wh

will :: =v +k t v, -k -wh

=subj v

ask :: =q =subj v q

+wh q, -wh

ε :: =t +wh q t, -wh

+k t, -k -wh

will :: =v +k t v, -k -wh

=subj v

eat :: =obj =subj v cake :: obj

who :: subj -k -wh

who :: subj -k -wh

92 / 201

Notation and Basics Example fragment Loops and “derivational state” Derivation trees

...

ask :: =q =subj v >

<

>

<

<

cakeeat

will ::

ε :: +wh q

who ::

q

<

>

<

<

cakeeat

will ::

who :: -wh

ε :: +wh q

+wh q, -wh

ε :: =t +wh q >

<

<

cakeeat

will :: t

who :: -wh

t, -wh

t, -wh

+k t, -k -wh

will :: =v +k t v, -k -wh

=subj v

ask :: =q =subj v q

+wh q, -wh

ε :: =t +wh q t, -wh

+k t, -k -wh

will :: =v +k t v, -k -wh

=subj v

eat :: =obj =subj v cake :: obj

who :: subj -k -wh

who :: subj -k -wh

92 / 201

Notation and Basics Example fragment Loops and “derivational state” Derivation trees

...

ask :: =q =subj v >

<

>

<

<

cakeeat

will ::

ε :: +wh q

who ::

q

<

>

<

<

cakeeat

will ::

who :: -wh

ε :: +wh q

+wh q, -wh

ε :: =t +wh q >

<

<

cakeeat

will :: t

who :: -wh

t, -wh

t, -wh

+k t, -k -wh

will :: =v +k t v, -k -wh

=subj v

ask :: =q =subj v q

+wh q, -wh

ε :: =t +wh q t, -wh

+k t, -k -wh

will :: =v +k t v, -k -wh

=subj v

eat :: =obj =subj v cake :: obj

who :: subj -k -wh

who :: subj -k -wh

92 / 201

Notation and Basics Example fragment Loops and “derivational state” Derivation trees

...

ask :: =q =subj v >

<

>

<

<

cakeeat

will ::

ε :: +wh q

who ::

q

<

>

<

<

cakeeat

will ::

who :: -wh

ε :: +wh q

+wh q, -wh

ε :: =t +wh q >

<

<

cakeeat

will :: t

who :: -wh

t, -wh

t, -wh

+k t, -k -wh

will :: =v +k t v, -k -wh

=subj v

ask :: =q =subj v q

+wh q, -wh

ε :: =t +wh q t, -wh

+k t, -k -wh

will :: =v +k t v, -k -wh

=subj v

eat :: =obj =subj v cake :: obj

who :: subj -k -wh

who :: subj -k -wh

92 / 201

Notation and Basics Example fragment Loops and “derivational state” Derivation trees

...

ask :: =q =subj v >

<

>

<

<

cakeeat

will ::

ε :: +wh q

who ::

q

<

>

<

<

cakeeat

will ::

who :: -wh

ε :: +wh q

+wh q, -wh

ε :: =t +wh q >

<

<

cakeeat

will :: t

who :: -wh

t, -wh

t, -wh

+k t, -k -wh

will :: =v +k t v, -k -wh

=subj v

ask :: =q =subj v q

+wh q, -wh

ε :: =t +wh q t, -wh

+k t, -k -wh

will :: =v +k t v, -k -wh

=subj v

eat :: =obj =subj v cake :: obj

who :: subj -k -wh

who :: subj -k -wh

92 / 201

Notation and Basics Example fragment Loops and “derivational state” Derivation trees

...

ask :: =q =subj v >

<

>

<

<

cakeeat

will ::

ε :: +wh q

who ::

q

<

>

<

<

cakeeat

will ::

who :: -wh

ε :: +wh q

+wh q, -wh

ε :: =t +wh q >

<

<

cakeeat

will :: t

who :: -wh

t, -wh

t, -wh

+k t, -k -wh

will :: =v +k t v, -k -wh

=subj v

ask :: =q =subj v q

+wh q, -wh

ε :: =t +wh q t, -wh

+k t, -k -wh

will :: =v +k t v, -k -wh

=subj v

eat :: =obj =subj v cake :: obj

who :: subj -k -wh

who :: subj -k -wh

92 / 201

Notation and Basics Example fragment Loops and “derivational state” Derivation trees

Labeling of internal nodes

John ate cake :: S

ate cake :: VP

cake :: NPate :: V

John :: NP

S

VP

cake :: NPate :: V

John :: NP

93 / 201

Notation and Basics Example fragment Loops and “derivational state” Derivation trees

Labeling of internal nodes

John ate cake :: S

ate cake :: VP

cake :: NPate :: V

John :: NP

S

VP

cake :: NPate :: V

John :: NP

93 / 201

Notation and Basics Example fragment Loops and “derivational state” Derivation trees

Labeling of internal nodes

John :: NP
ate :: (S\NP)/NP cake :: NP

ate cake :: S\NP
John ate cake :: S

John ate cake :: S

ate cake :: S\NP

cake :: NPate :: (S\NP)/NP

John :: NP

S

S\NP

cake :: NPate :: (S\NP)/NP

John :: NP

94 / 201

Notation and Basics Example fragment Loops and “derivational state” Derivation trees

Labeling of internal nodes

John :: NP
ate :: (S\NP)/NP cake :: NP

ate cake :: S\NP
John ate cake :: S

John ate cake :: S

ate cake :: S\NP

cake :: NPate :: (S\NP)/NP

John :: NP

S

S\NP

cake :: NPate :: (S\NP)/NP

John :: NP

94 / 201

Notation and Basics Example fragment Loops and “derivational state” Derivation trees

...

ask :: =q =subj v >

<

>

<

<

cakeeat

will ::

ε :: +wh q

who ::

q

<

>

<

<

cakeeat

will ::

who :: -wh

ε :: +wh q

+wh q, -wh

ε :: =t +wh q >

<

<

cakeeat

will :: t

who :: -wh

t, -wh

t, -wh

+k t, -k -wh

will :: =v +k t v, -k -wh

=subj v

ask :: =q =subj v q

+wh q, -wh

ε :: =t +wh q t, -wh

+k t, -k -wh

will :: =v +k t v, -k -wh

=subj v

eat :: =obj =subj v cake :: obj

who :: subj -k -wh

who :: subj -k -wh

95 / 201

Notation and Basics Example fragment Loops and “derivational state” Derivation trees

Context-free structure

〈=subj v〉 → 〈=q =subj v〉 〈q〉
〈q〉 → 〈+wh q, -wh〉

〈+wh q, -wh〉 → 〈=t +wh q〉 〈t, -wh〉

General schemas for merge steps (approximate):

〈γ, α1, . . . , αj , β1, . . . , βk〉 → 〈=fγ, α1, . . . , αj〉 〈f, β1, . . . , βk〉
〈γ, α1, . . . , αj , δ, β1, . . . , βk〉 → 〈=fγ, α1, . . . , αj〉 〈fδ, β1, . . . , βk〉

General schemas for move steps (approximate):

〈γ, α1, . . . , αi−1, αi+1, . . . , αk〉 → 〈+fγ, α1, . . . , αi−1, -f, αi+1, . . . , αk〉
〈γ, α1, . . . , αi−1, δ, αi+1, . . . , αk〉 → 〈+fγ, α1, . . . , αi−1, -fδ, αi+1, . . . , αk〉

move steps change something without combining it with anything
Compare with unary CFG rules, or type-raising in CCG, or . . .

96 / 201

Notation and Basics Example fragment Loops and “derivational state” Derivation trees

Context-free structure

〈=subj v〉 → 〈=q =subj v〉 〈q〉
〈q〉 → 〈+wh q, -wh〉

〈+wh q, -wh〉 → 〈=t +wh q〉 〈t, -wh〉

General schemas for merge steps (approximate):

〈γ, α1, . . . , αj , β1, . . . , βk〉 → 〈=fγ, α1, . . . , αj〉 〈f, β1, . . . , βk〉
〈γ, α1, . . . , αj , δ, β1, . . . , βk〉 → 〈=fγ, α1, . . . , αj〉 〈fδ, β1, . . . , βk〉

General schemas for move steps (approximate):

〈γ, α1, . . . , αi−1, αi+1, . . . , αk〉 → 〈+fγ, α1, . . . , αi−1, -f, αi+1, . . . , αk〉
〈γ, α1, . . . , αi−1, δ, αi+1, . . . , αk〉 → 〈+fγ, α1, . . . , αi−1, -fδ, αi+1, . . . , αk〉

move steps change something without combining it with anything
Compare with unary CFG rules, or type-raising in CCG, or . . .

96 / 201

Notation and Basics Example fragment Loops and “derivational state” Derivation trees

Context-free structure

〈=subj v〉 → 〈=q =subj v〉 〈q〉
〈q〉 → 〈+wh q, -wh〉

〈+wh q, -wh〉 → 〈=t +wh q〉 〈t, -wh〉

General schemas for merge steps (approximate):

〈γ, α1, . . . , αj , β1, . . . , βk〉 → 〈=fγ, α1, . . . , αj〉 〈f, β1, . . . , βk〉
〈γ, α1, . . . , αj , δ, β1, . . . , βk〉 → 〈=fγ, α1, . . . , αj〉 〈fδ, β1, . . . , βk〉

General schemas for move steps (approximate):

〈γ, α1, . . . , αi−1, αi+1, . . . , αk〉 → 〈+fγ, α1, . . . , αi−1, -f, αi+1, . . . , αk〉
〈γ, α1, . . . , αi−1, δ, αi+1, . . . , αk〉 → 〈+fγ, α1, . . . , αi−1, -fδ, αi+1, . . . , αk〉

move steps change something without combining it with anything
Compare with unary CFG rules, or type-raising in CCG, or . . .

96 / 201

Notation and Basics Example fragment Loops and “derivational state” Derivation trees

Importance of the SMC

The SMC ensures that there is a finite number of types (that we care about).

Recall: move



<

ε :: +wh c >

who :: -wh <

ate :: what :: -wh


is undefined

So move cannot be applied to expressions of type 〈+wh c, -wh, -wh〉.
Nor to expressions of type 〈+wh c, -wh -k, -wh〉.
These are “dead end” types.

An expression of type 〈t, -wh -k, -wh〉 can be the input to merge.
But such types are also bound to lead to dead ends.

So any type of the form 〈α, . . . , -fαi , . . . , -fαj , . . .〉 is not useful.
Thus there are only a finite number of useful types.

(Michaelis 2001)
97 / 201

Notation and Basics Example fragment Loops and “derivational state” Derivation trees

c

+wh c, -wh

ε :: =t +wh c t, -wh

+k t, -k, -wh

will :: =v +k t v, -k, -wh

=subj v, -wh

think :: =t =subj v t, -wh

+k t, -k, -wh

will :: =v +k t v, -k, -wh

=subj v, -wh

eat :: =obj =subj v what :: obj -wh

John :: subj -k

Mary :: subj -k

t

+k t, -k

will :: =v +k t v, -k

=subj v

think :: =t =subj v t

+k t, -k

will :: =v +k t v, -k

=subj v

eat :: =obj =subj v cake :: obj

John :: subj -k

Mary :: subj -k

98 / 201

Notation and Basics Example fragment Loops and “derivational state” Derivation trees

c

+wh c, -wh

ε :: =t +wh c t, -wh

+k t, -k, -wh

will :: =v +k t v, -k, -wh

=subj v, -wh

think :: =t =subj v t, -wh

+k t, -k, -wh

will :: =v +k t v, -k, -wh

=subj v, -wh

eat :: =obj =subj v what :: obj -wh

John :: subj -k

Mary :: subj -k

t

+k t, -k

will :: =v +k t v, -k

=subj v

think :: =t =subj v t

+k t, -k

will :: =v +k t v, -k

=subj v

eat :: =obj =subj v cake :: obj

John :: subj -k

Mary :: subj -k

98 / 201

Notation and Basics Example fragment Loops and “derivational state” Derivation trees

c

+wh c, -wh

ε :: =t +wh c t, -wh

+k t, -k, -wh

will :: =v +k t v, -k, -wh

=subj v, -wh

think :: =t =subj v t, -wh

+k t, -k, -wh

will :: =v +k t v, -k, -wh

=subj v, -wh

eat :: =obj =subj v what :: obj -wh

John :: subj -k

Mary :: subj -k

c

+wh c, -wh

ε :: =t +wh c t, -wh

+k t, -k, -wh

will :: =v +k t v, -k, -wh

=subj v, -wh

think :: =t =subj v t, -wh

+k t, -k -wh

will :: =v +k t v, -k -wh

=subj v

eat :: =obj =subj v cake :: obj

who :: subj -k -wh

Mary :: subj -k

99 / 201

Notation and Basics Example fragment Loops and “derivational state” Derivation trees

c

+wh c, -wh

ε :: =t +wh c t, -wh

+k t, -k, -wh

will :: =v +k t v, -k, -wh

=subj v, -wh

think :: =t =subj v t, -wh

+k t, -k, -wh

will :: =v +k t v, -k, -wh

=subj v, -wh

eat :: =obj =subj v what :: obj -wh

John :: subj -k

Mary :: subj -k

c

+wh c, -wh

ε :: =t +wh c t, -wh

+k t, -k, -wh

will :: =v +k t v, -k, -wh

=subj v, -wh

think :: =t =subj v t, -wh

+k t, -k -wh

will :: =v +k t v, -k -wh

=subj v

eat :: =obj =subj v cake :: obj

who :: subj -k -wh

Mary :: subj -k

99 / 201

Part 1: Grammars and cognitive hypotheses
What is a grammar?
What can grammars do?
Concrete illustration of a target: Surprisal

Parts 2–4: Assembling the pieces
Minimalist Grammars (MGs)
MGs and MCFGs
Probabilities on MGs

Part 5: Learning and wrap-up
Something slightly different: Learning model
Recap and open questions

Sharpening the empirical claims of generative syntax
through formalization

Tim Hunter — ESSLLI, August 2015

Part 3

MGs and MCFGs

A different perspective on CFGs Concatenative and non-concatenative operations MCFGs Back to MGs

Where we’re up to

We’ve seen:

MGs with operations defined that manipulated trees
that the structure that “really matters” (e.g. for recursion) can be boiled
down to funny-looking “derivation trees” (with things like 〈t, -k〉 at the
non-leaf nodes)

Now:

A way to think of how these derivation trees relate to surface strings (without
going via trees)
In some ways not totally necessary for the rest of the course, but helpful

Later:

Adding probabilities to MGs: in a way that sort of works, and does some good
stuff, but doesn’t do everything we’d want
Adding probabilities to MGs: in an even better way

102 / 201

A different perspective on CFGs Concatenative and non-concatenative operations MCFGs Back to MGs

Outline

9 A different perspective on CFGs

10 Concatenative and non-concatenative operations

11 MCFGs

12 Back to MGs

103 / 201

A different perspective on CFGs Concatenative and non-concatenative operations MCFGs Back to MGs

Outline

9 A different perspective on CFGs

10 Concatenative and non-concatenative operations

11 MCFGs

12 Back to MGs

104 / 201

A different perspective on CFGs Concatenative and non-concatenative operations MCFGs Back to MGs

Trees

S

VP

NP

N
cake

V
likes

NP

N
boy

D
the

the boy likes cake :: S

likes cake :: VP

cake :: NP

cake :: N

likes :: V

the boy :: NP

boy :: Nthe :: D

How to think of a tree:

less as a picture of a string
more as a graphical representation of how a string was constructed, with the
string “at” the top node

105 / 201

A different perspective on CFGs Concatenative and non-concatenative operations MCFGs Back to MGs

Trees

S

VP

NP

N
cake

V
likes

NP

N
boy

D
the

the boy likes cake :: S

likes cake :: VP

cake :: NP

cake :: N

likes :: V

the boy :: NP

boy :: Nthe :: D

How to think of a tree:

less as a picture of a string
more as a graphical representation of how a string was constructed, with the
string “at” the top node

105 / 201

A different perspective on CFGs Concatenative and non-concatenative operations MCFGs Back to MGs

Two sides of a CFG rule

A rule like ‘S → NP VP’ says two things:

What combines with what:
An NP and a VP can combine to form an S

How to produce a string of the new category:
Put the NP-string to the left of the VP-string

More explicitly:
st :: S → s :: NP t :: VP

106 / 201

A different perspective on CFGs Concatenative and non-concatenative operations MCFGs Back to MGs

Example: X-bar theory

Japanese
XP → Spec X′
X′ → Comp X

English
XP → Spec X′
X′ → X Comp

Japanese
st :: XP → s :: Spec t :: X′
st :: X′ → s :: Comp t :: X

English
st :: XP → s :: Spec t :: X′
ts :: X′ → s :: Comp t :: X

John-ga Mary-o mita :: VP

Mary-o mita :: V′

mita :: VMary-o :: Comp

John-ga :: Spec

John saw Mary :: VP

saw Mary :: V′

saw :: VMary :: Comp

John :: Spec

107 / 201

A different perspective on CFGs Concatenative and non-concatenative operations MCFGs Back to MGs

Example: X-bar theory

Japanese
XP → Spec X′
X′ → Comp X

English
XP → Spec X′
X′ → X Comp

Japanese
st :: XP → s :: Spec t :: X′
st :: X′ → s :: Comp t :: X

English
st :: XP → s :: Spec t :: X′
ts :: X′ → s :: Comp t :: X

John-ga Mary-o mita :: VP

Mary-o mita :: V′

mita :: VMary-o :: Comp

John-ga :: Spec

John saw Mary :: VP

saw Mary :: V′

saw :: VMary :: Comp

John :: Spec

107 / 201

A different perspective on CFGs Concatenative and non-concatenative operations MCFGs Back to MGs

Example: X-bar theory

Japanese
XP → Spec X′
X′ → Comp X

English
XP → Spec X′
X′ → X Comp

Japanese
st :: XP → s :: Spec t :: X′
st :: X′ → s :: Comp t :: X

English
st :: XP → s :: Spec t :: X′
ts :: X′ → s :: Comp t :: X

John-ga Mary-o mita :: VP

Mary-o mita :: V′

mita :: VMary-o :: Comp

John-ga :: Spec

John saw Mary :: VP

saw Mary :: V′

saw :: VMary :: Comp

John :: Spec

107 / 201

A different perspective on CFGs Concatenative and non-concatenative operations MCFGs Back to MGs

Outline

9 A different perspective on CFGs

10 Concatenative and non-concatenative operations

11 MCFGs

12 Back to MGs

108 / 201

A different perspective on CFGs Concatenative and non-concatenative operations MCFGs Back to MGs

Concatenative and non-concatenative operations

Concatenative morphology:
play + ed ; played
play + ing ; playing
play + s ; plays

Non-concatenative morphology:
(k,t,b) + (i,aa) ; kitaab (“book”)
(k,t,b) + (aa,i) ; kaatib (“writer”)
(k,t,b) + (ma,uu) ; maktuub (“written”)
(k,t,b) + (a,i,a) ; katiba (“document”)

Concatenative syntax:
plays + tennis ; plays tennis
plays + soccer ; plays soccer
John + plays soccer ; John plays soccer
Mary + plays soccer ; Mary plays soccer

Non-concatenative syntax:
seems + (John, to be tall) ; John seems to be tall
seems + (Mary, to be intelligent) ; Mary seems to be intelligent
did + (John see, who) ; who did John see
did + (Mary meet, who) ; who did Mary meet

109 / 201

A different perspective on CFGs Concatenative and non-concatenative operations MCFGs Back to MGs

Concatenative and non-concatenative operations

Concatenative morphology:
play + ed ; played
play + ing ; playing
play + s ; plays

Non-concatenative morphology:
(k,t,b) + (i,aa) ; kitaab (“book”)
(k,t,b) + (aa,i) ; kaatib (“writer”)
(k,t,b) + (ma,uu) ; maktuub (“written”)
(k,t,b) + (a,i,a) ; katiba (“document”)

Concatenative syntax:
plays + tennis ; plays tennis
plays + soccer ; plays soccer
John + plays soccer ; John plays soccer
Mary + plays soccer ; Mary plays soccer

Non-concatenative syntax:
seems + (John, to be tall) ; John seems to be tall
seems + (Mary, to be intelligent) ; Mary seems to be intelligent
did + (John see, who) ; who did John see
did + (Mary meet, who) ; who did Mary meet

109 / 201

A different perspective on CFGs Concatenative and non-concatenative operations MCFGs Back to MGs

Concatenative and non-concatenative operations

Concatenative morphology:
play + ed ; played
play + ing ; playing
play + s ; plays

Non-concatenative morphology:
(k,t,b) + (i,aa) ; kitaab (“book”)
(k,t,b) + (aa,i) ; kaatib (“writer”)
(k,t,b) + (ma,uu) ; maktuub (“written”)
(k,t,b) + (a,i,a) ; katiba (“document”)

Concatenative syntax:
plays + tennis ; plays tennis
plays + soccer ; plays soccer
John + plays soccer ; John plays soccer
Mary + plays soccer ; Mary plays soccer

Non-concatenative syntax:
seems + (John, to be tall) ; John seems to be tall
seems + (Mary, to be intelligent) ; Mary seems to be intelligent
did + (John see, who) ; who did John see
did + (Mary meet, who) ; who did Mary meet 109 / 201

A different perspective on CFGs Concatenative and non-concatenative operations MCFGs Back to MGs

Non-concatenative morphology

kitaab :: A

〈i,aa〉 :: C〈k,t,b〉 :: B

kaatib :: A

〈aa,i〉 :: C〈k,t,b〉 :: B

kutub :: A

〈u,u〉 :: C〈k,t,b〉 :: B

stuvw :: A → 〈s, u,w〉 :: B 〈t, v〉 :: C

gespielt :: E

〈ge,t〉 :: Dspiel :: A

gekauft :: E

〈ge,t〉 :: Dkauf :: A

gemacht :: E

〈ge,t〉 :: Dmach :: A

stu :: E → t :: A 〈s, u〉 :: D

110 / 201

A different perspective on CFGs Concatenative and non-concatenative operations MCFGs Back to MGs

Non-concatenative morphology

kitaab :: A

〈i,aa〉 :: C〈k,t,b〉 :: B

kaatib :: A

〈aa,i〉 :: C〈k,t,b〉 :: B

kutub :: A

〈u,u〉 :: C〈k,t,b〉 :: B

stuvw :: A → 〈s, u,w〉 :: B 〈t, v〉 :: C

gespielt :: E

〈ge,t〉 :: Dspiel :: A

gekauft :: E

〈ge,t〉 :: Dkauf :: A

gemacht :: E

〈ge,t〉 :: Dmach :: A

stu :: E → t :: A 〈s, u〉 :: D

110 / 201

A different perspective on CFGs Concatenative and non-concatenative operations MCFGs Back to MGs

Non-concatenative morphology

stuvw :: A → 〈s, u,w〉 :: B 〈t, v〉 :: C
stu :: E → t :: A 〈s, u〉 :: D

〈ts, u〉 :: D → t :: F 〈s, u〉 :: D

gekitaabt :: E

〈ge,t〉 :: Dkitaab :: A

〈i,aa〉 :: C〈k,t,b〉 :: B

ausgekitaabt :: E

〈ausge,t〉 :: D

〈ge,t〉 :: Daus :: F

kitaab :: A

〈i,aa〉 :: C〈k,t,b〉 :: B

If our goal is to characterize the array of well-formed/derivable objects — not to
pronounce them — then all we care about is “what’s built out of what”:

A → B C
E → A D
D → F D

111 / 201

A different perspective on CFGs Concatenative and non-concatenative operations MCFGs Back to MGs

Non-concatenative morphology

stuvw :: A → 〈s, u,w〉 :: B 〈t, v〉 :: C
stu :: E → t :: A 〈s, u〉 :: D

〈ts, u〉 :: D → t :: F 〈s, u〉 :: D

gekitaabt :: E

〈ge,t〉 :: Dkitaab :: A

〈i,aa〉 :: C〈k,t,b〉 :: B

ausgekitaabt :: E

〈ausge,t〉 :: D

〈ge,t〉 :: Daus :: F

kitaab :: A

〈i,aa〉 :: C〈k,t,b〉 :: B

If our goal is to characterize the array of well-formed/derivable objects — not to
pronounce them — then all we care about is “what’s built out of what”:

A → B C
E → A D
D → F D

111 / 201

A different perspective on CFGs Concatenative and non-concatenative operations MCFGs Back to MGs

Non-concatenative morphology

stuvw :: A → 〈s, u,w〉 :: B 〈t, v〉 :: C
stu :: E → t :: A 〈s, u〉 :: D

〈ts, u〉 :: D → t :: F 〈s, u〉 :: D

gekitaabt :: E

〈ge,t〉 :: Dkitaab :: A

〈i,aa〉 :: C〈k,t,b〉 :: B

ausgekitaabt :: E

〈ausge,t〉 :: D

〈ge,t〉 :: Daus :: F

kitaab :: A

〈i,aa〉 :: C〈k,t,b〉 :: B

If our goal is to characterize the array of well-formed/derivable objects — not to
pronounce them — then all we care about is “what’s built out of what”:

A → B C
E → A D
D → F D

111 / 201

A different perspective on CFGs Concatenative and non-concatenative operations MCFGs Back to MGs

Non-concatenative morphology

stuvw :: A → 〈s, u,w〉 :: B 〈t, v〉 :: C
stu :: E → t :: A 〈s, u〉 :: D

〈ts, u〉 :: D → t :: F 〈s, u〉 :: D

gekitaabt :: E

〈ge,t〉 :: Dkitaab :: A

〈i,aa〉 :: C〈k,t,b〉 :: B

ausgekitaabt :: E

〈ausge,t〉 :: D

〈ge,t〉 :: Daus :: F

kitaab :: A

〈i,aa〉 :: C〈k,t,b〉 :: B

If our goal is to characterize the array of well-formed/derivable objects — not to
pronounce them — then all we care about is “what’s built out of what”:

A → B C
E → A D
D → F D

111 / 201

A different perspective on CFGs Concatenative and non-concatenative operations MCFGs Back to MGs

Outline

9 A different perspective on CFGs

10 Concatenative and non-concatenative operations

11 MCFGs

12 Back to MGs

112 / 201

A different perspective on CFGs Concatenative and non-concatenative operations MCFGs Back to MGs

Multiple Context-Free Grammars (MCFGs)

st :: S → s :: NP t :: VP

An MCFG generalises to allow yields to be tuples of strings.
t2st1 :: Q → s :: NP 〈t1, t2〉 :: VPWH

This rule says two things:

We can combine an NP with a VPWH to make a Q.
The yield of the Q is t2st1,
where s is the yield of the NP and 〈t1, t2〉 is the yield of the VPWH.

which girl the boy says is tall :: Q →
the boy :: NP 〈says is tall,which girl〉 :: VPWH

113 / 201

A different perspective on CFGs Concatenative and non-concatenative operations MCFGs Back to MGs

Multiple Context-Free Grammars (MCFGs)

st :: S → s :: NP t :: VP

An MCFG generalises to allow yields to be tuples of strings.
t2st1 :: Q → s :: NP 〈t1, t2〉 :: VPWH

This rule says two things:

We can combine an NP with a VPWH to make a Q.
The yield of the Q is t2st1,
where s is the yield of the NP and 〈t1, t2〉 is the yield of the VPWH.

which girl the boy says is tall :: Q →
the boy :: NP 〈says is tall,which girl〉 :: VPWH

113 / 201

A different perspective on CFGs Concatenative and non-concatenative operations MCFGs Back to MGs

Some technical details

Each nonterminal has a rank n, and yields only n-tuples of strings.

So given this rule:
t2st1 :: Q → s :: NP 〈t1, t2〉 :: VPWH

we know that anything producing a VPWH must produce a 2-tuple.
〈. . . , . . .〉 :: VPWH → . . .

and that anything producing an NP must produce a 1-tuple:
. . . :: NP → . . .

The string-composition functions cannot copy pieces of their arguments.

OK s t :: VP → s :: V t :: NP
OK t s himself :: S → s :: V t :: NP

Not OK t s t :: S → s :: V t :: NP
Essentially equivalent to linear context-free rewriting systems (LCFRSs).

(Seki et al. 1991, Weir 1988, Vijay-Shanker et al. 1987)
114 / 201

A different perspective on CFGs Concatenative and non-concatenative operations MCFGs Back to MGs

Some technical details

Each nonterminal has a rank n, and yields only n-tuples of strings.

So given this rule:
t2st1 :: Q → s :: NP 〈t1, t2〉 :: VPWH

we know that anything producing a VPWH must produce a 2-tuple.
〈. . . , . . .〉 :: VPWH → . . .

and that anything producing an NP must produce a 1-tuple:
. . . :: NP → . . .

The string-composition functions cannot copy pieces of their arguments.

OK s t :: VP → s :: V t :: NP
OK t s himself :: S → s :: V t :: NP

Not OK t s t :: S → s :: V t :: NP

Essentially equivalent to linear context-free rewriting systems (LCFRSs).

(Seki et al. 1991, Weir 1988, Vijay-Shanker et al. 1987)
114 / 201

A different perspective on CFGs Concatenative and non-concatenative operations MCFGs Back to MGs

Some technical details

Each nonterminal has a rank n, and yields only n-tuples of strings.

So given this rule:
t2st1 :: Q → s :: NP 〈t1, t2〉 :: VPWH

we know that anything producing a VPWH must produce a 2-tuple.
〈. . . , . . .〉 :: VPWH → . . .

and that anything producing an NP must produce a 1-tuple:
. . . :: NP → . . .

The string-composition functions cannot copy pieces of their arguments.

OK s t :: VP → s :: V t :: NP
OK t s himself :: S → s :: V t :: NP

Not OK t s t :: S → s :: V t :: NP
Essentially equivalent to linear context-free rewriting systems (LCFRSs).

(Seki et al. 1991, Weir 1988, Vijay-Shanker et al. 1987)
114 / 201

A different perspective on CFGs Concatenative and non-concatenative operations MCFGs Back to MGs

Beyond context-free

t1t2 :: S → 〈t1, t2〉 :: P
〈t1u1, t2u2〉 :: P → 〈t1, t2〉 :: P 〈u1, u2〉 :: E

〈ε, ε〉 :: P
〈a, a〉 :: E
〈b, b〉 :: E

{
ww | w ∈ {a,b}∗

}

aabaaaba :: S

〈aaba,aaba〉 :: P

〈a,a〉 :: E〈aab,aab〉 :: P

〈b,b〉 :: E〈aa,aa〉 :: P

〈a,a〉 :: E〈a,a〉 :: P

〈a,a〉 :: E〈ε, ε〉 :: P

Unlike in a CFG, we can ensure that the two “halves” are extended in the same
ways without concatenating them together.

115 / 201

A different perspective on CFGs Concatenative and non-concatenative operations MCFGs Back to MGs

For comparison

t1st2 :: S → t1 :: A s :: S t2 :: A
t1st2 :: S → t1 :: B s :: S t2 :: B

ε :: S
a :: A
b :: B

abaaaaba :: S

a :: Abaaaab :: S

b :: Baaaa :: S

a :: Aaa :: S

a :: Aε :: Sa :: A

a :: A

b :: B

a :: A

116 / 201

A different perspective on CFGs Concatenative and non-concatenative operations MCFGs Back to MGs

Outline

9 A different perspective on CFGs

10 Concatenative and non-concatenative operations

11 MCFGs

12 Back to MGs

117 / 201

A different perspective on CFGs Concatenative and non-concatenative operations MCFGs Back to MGs

Merge and move

=f α
f β

merge

β

α

<

=f α f β

merge

β α

>

+f α

-f β

move αβ

>

118 / 201

A different perspective on CFGs Concatenative and non-concatenative operations MCFGs Back to MGs

What matters in a (derived) tree

This tree:

x

-f -g

becomes a tuple of categorized strings:〈
s :: x , t :: -f , u :: -g

〉
0

or, equivalently, a tuple-of-strings, categorized by a tuple-of-categories:
〈s, t, u〉 :: 〈x, -f, -g〉0

(Michaelis 2001, Stabler and Keenan 2003)
119 / 201

A different perspective on CFGs Concatenative and non-concatenative operations MCFGs Back to MGs

Remember MG derivation trees?

We can tell that this tree represents
a well-formed derivation, by
checking the feature-manipulations
at each step.
How can we work out which string it
derives?

Build up a tree according to merge
and move rules, and read off
leaves of the tree.
But there’s a simpler way.

t

〈+k t, -k〉

will :: =v +k t 〈v, -k〉

=subj v

think :: =t =subj v t

〈+k t, -k〉

will :: =v +k t 〈v, -k〉

=subj v

eat :: =obj =subj v cake :: obj

John :: subj -k

Mary :: subj -k

120 / 201

A different perspective on CFGs Concatenative and non-concatenative operations MCFGs Back to MGs

Producing a string from a derivation tree

t

〈+k t, -k〉

.

What do we need to have computed at the 〈+k t, -k〉
node, in order to compute the final string

Mary will think John will eat cake

at the t node?

This tree would do:
<

>

<

>

>

>

<

cake ::eat ::

will ::

John ::

think ::

Mary :: -k

will :: +k t

But all we actually need to know is:
What’s the string corresponding to the
part that’s going to move to check -k?
What’s the string corresponding to the
leftovers?

These questions are answered by the tuple
〈will think John will eat cake, Mary〉

121 / 201

A different perspective on CFGs Concatenative and non-concatenative operations MCFGs Back to MGs

Producing a string from a derivation tree

t

〈+k t, -k〉

.

What do we need to have computed at the 〈+k t, -k〉
node, in order to compute the final string

Mary will think John will eat cake

at the t node?

This tree would do:
<

>

<

>

>

>

<

cake ::eat ::

will ::

John ::

think ::

Mary :: -k

will :: +k t

But all we actually need to know is:
What’s the string corresponding to the
part that’s going to move to check -k?
What’s the string corresponding to the
leftovers?

These questions are answered by the tuple
〈will think John will eat cake, Mary〉

121 / 201

A different perspective on CFGs Concatenative and non-concatenative operations MCFGs Back to MGs

Producing a string from a derivation tree

t

〈+k t, -k〉

will :: =v +k t 〈v, -k〉

.

What do we need to have computed at the 〈v, -k〉
node, in order to compute the desired tuple

〈will think John will eat cake, Mary〉

at the 〈+k t, -k〉 node?

This tree would do:
>

<

>

>

>

<

cake ::eat ::

will ::

John ::

think :: v

Mary :: -k
But all we actually need to know is:

What’s the string corresponding to the
part that’s going to move to check -k?
What’s the string corresponding to the
leftovers?

These questions are answered by the tuple
〈think John will eat cake, Mary〉

122 / 201

A different perspective on CFGs Concatenative and non-concatenative operations MCFGs Back to MGs

Producing a string from a derivation tree

t

〈+k t, -k〉

will :: =v +k t 〈v, -k〉

.

What do we need to have computed at the 〈v, -k〉
node, in order to compute the desired tuple

〈will think John will eat cake, Mary〉

at the 〈+k t, -k〉 node?

This tree would do:
>

<

>

>

>

<

cake ::eat ::

will ::

John ::

think :: v

Mary :: -k
But all we actually need to know is:

What’s the string corresponding to the
part that’s going to move to check -k?
What’s the string corresponding to the
leftovers?

These questions are answered by the tuple
〈think John will eat cake, Mary〉

122 / 201

A different perspective on CFGs Concatenative and non-concatenative operations MCFGs Back to MGs

Producing a string from a derivation tree

t

〈+k t, -k〉

will :: =v +k t 〈v, -k〉

=subj v

.

Mary :: subj -k

What do we need to have computed at the =subj v
node, in order to compute the desired tuple

〈think John will eat cake, Mary〉

at the 〈v, -k〉 node?

This tree would do:
<

>

>

>

<

cake ::eat ::

will ::

John ::

think :: =subj v
But all we actually need to know is:

What’s the string corresponding to the
entire tree? (The “leftovers after no
movement”.)

This question is answered by the string
think John will eat cake

123 / 201

A different perspective on CFGs Concatenative and non-concatenative operations MCFGs Back to MGs

Producing a string from a derivation tree

t

〈+k t, -k〉

will :: =v +k t 〈v, -k〉

=subj v

.

Mary :: subj -k

What do we need to have computed at the =subj v
node, in order to compute the desired tuple

〈think John will eat cake, Mary〉

at the 〈v, -k〉 node?

This tree would do:
<

>

>

>

<

cake ::eat ::

will ::

John ::

think :: =subj v
But all we actually need to know is:

What’s the string corresponding to the
entire tree? (The “leftovers after no
movement”.)

This question is answered by the string
think John will eat cake

123 / 201

A different perspective on CFGs Concatenative and non-concatenative operations MCFGs Back to MGs

What matters in a (derived) tree

This tree:

x

-f -g

becomes a tuple of categorized strings:〈
s :: x , t :: -f , u :: -g

〉
0

or, equivalently, a tuple-of-strings, categorized by a tuple-of-categories:
〈s, t, u〉 :: 〈x, -f, -g〉0

(Michaelis 2001, Stabler and Keenan 2003)
124 / 201

A different perspective on CFGs Concatenative and non-concatenative operations MCFGs Back to MGs

MCFG rules
t

〈+k t, -k〉

will :: =v +k t 〈v, -k〉

=subj v

.

Mary :: subj -k

t2t1 :: t → 〈t1, t2〉 :: 〈+k t, -k〉
Mary will think John will eat cake :: t → 〈will think John will eat cake, Mary〉 :: 〈+k t, -k〉

〈st1, t2〉 :: 〈+k t, -k〉 → s :: =v +k t 〈t1, t2〉 :: 〈v, -k〉
〈will think John will eat cake, Mary〉 :: 〈+k t, -k〉 → will :: =v +k t 〈think John will eat cake, Mary〉 :: 〈v, -k〉

〈s, t〉 :: 〈v, -k〉 → s :: =subj v t :: subj -k

〈think John will eat cake, Mary〉 :: 〈v, -k〉 → think John will eat cake :: =subj v Mary :: subj -k

125 / 201

A different perspective on CFGs Concatenative and non-concatenative operations MCFGs Back to MGs

One slightly annoying wrinkle

We know that this is a valid derivational step:
α

=fα f

What is the corresponding MCFG rule?

Selected thing on the right?

st :: α → s :: =fα t :: f

<

John ::with :: p

p

with :: =d p John :: d

Selected thing on the left?

ts :: α → s :: =fα t :: f

>

<

cake ::eat :: v

John ::

v

<

cake ::eat :: =d v

=d v John :: d

126 / 201

A different perspective on CFGs Concatenative and non-concatenative operations MCFGs Back to MGs

One slightly annoying wrinkle

We know that this is a valid derivational step:
α

=fα f

What is the corresponding MCFG rule?

Selected thing on the right?

st :: α → s :: =fα t :: f

<

John ::with :: p

p

with :: =d p John :: d

Selected thing on the left?

ts :: α → s :: =fα t :: f

>

<

cake ::eat :: v

John ::

v

<

cake ::eat :: =d v

=d v John :: d

126 / 201

A different perspective on CFGs Concatenative and non-concatenative operations MCFGs Back to MGs

One slightly annoying wrinkle

We know that this is a valid derivational step:
α

=fα f

What is the corresponding MCFG rule?

Selected thing on the right?

st :: α → s :: =fα t :: f

<

John ::with :: p

p

with :: =d p John :: d

Selected thing on the left?

ts :: α → s :: =fα t :: f

>

<

cake ::eat :: v

John ::

v

<

cake ::eat :: =d v

=d v John :: d

126 / 201

A different perspective on CFGs Concatenative and non-concatenative operations MCFGs Back to MGs

One slightly annoying wrinkle

Each type needs to record not only the unchecked features, but also whether the
expression is lexical.

I’ll write lexical types as 〈. . .〉1 and non-lexical types as 〈. . .〉0.

So types of the form 〈=fα〉1 act slightly differently from those of the form 〈=fα〉0.

st :: 〈α〉0 → s :: 〈=fα〉1 t :: 〈f〉n
with John :: 〈p〉0 → with :: 〈=d p〉1 John :: 〈d〉1

ts :: 〈α〉0 → s :: 〈=fα〉0 t :: 〈f〉n
John eat cake :: 〈v〉0 → eat cake :: 〈=d v〉0 John :: 〈d〉1

127 / 201

A different perspective on CFGs Concatenative and non-concatenative operations MCFGs Back to MGs

Context-free structure

〈=subj v〉 → 〈=q =subj v〉 〈q〉
〈q〉 → 〈+wh q, -wh〉

〈+wh q, -wh〉 → 〈=t +wh q〉 〈t, -wh〉

General schemas for merge steps (approximate):

〈γ, α1, . . . , αj , β1, . . . , βk〉 → 〈=fγ, α1, . . . , αj〉 〈f, β1, . . . , βk〉
〈γ, α1, . . . , αj , δ, β1, . . . , βk〉 → 〈=fγ, α1, . . . , αj〉 〈fδ, β1, . . . , βk〉

General schemas for move steps (approximate):

〈γ, α1, . . . , αi−1, αi+1, . . . , αk〉 → 〈+fγ, α1, . . . , αi−1, -f, αi+1, . . . , αk〉
〈γ, α1, . . . , αi−1, δ, αi+1, . . . , αk〉 → 〈+fγ, α1, . . . , αi−1, -fδ, αi+1, . . . , αk〉

move steps change something without combining it with anything
Compare with unary CFG rules, or type-raising in CCG, or . . .

128 / 201

A different perspective on CFGs Concatenative and non-concatenative operations MCFGs Back to MGs

Context-free structure

〈=subj v〉 → 〈=q =subj v〉 〈q〉
〈q〉 → 〈+wh q, -wh〉

〈+wh q, -wh〉 → 〈=t +wh q〉 〈t, -wh〉

General schemas for merge steps (approximate):

〈γ, α1, . . . , αj , β1, . . . , βk〉 → 〈=fγ, α1, . . . , αj〉 〈f, β1, . . . , βk〉
〈γ, α1, . . . , αj , δ, β1, . . . , βk〉 → 〈=fγ, α1, . . . , αj〉 〈fδ, β1, . . . , βk〉

General schemas for move steps (approximate):

〈γ, α1, . . . , αi−1, αi+1, . . . , αk〉 → 〈+fγ, α1, . . . , αi−1, -f, αi+1, . . . , αk〉
〈γ, α1, . . . , αi−1, δ, αi+1, . . . , αk〉 → 〈+fγ, α1, . . . , αi−1, -fδ, αi+1, . . . , αk〉

move steps change something without combining it with anything
Compare with unary CFG rules, or type-raising in CCG, or . . .

128 / 201

A different perspective on CFGs Concatenative and non-concatenative operations MCFGs Back to MGs

Context-free structure

〈=subj v〉 → 〈=q =subj v〉 〈q〉
〈q〉 → 〈+wh q, -wh〉

〈+wh q, -wh〉 → 〈=t +wh q〉 〈t, -wh〉

General schemas for merge steps (approximate):

〈γ, α1, . . . , αj , β1, . . . , βk〉 → 〈=fγ, α1, . . . , αj〉 〈f, β1, . . . , βk〉
〈γ, α1, . . . , αj , δ, β1, . . . , βk〉 → 〈=fγ, α1, . . . , αj〉 〈fδ, β1, . . . , βk〉

General schemas for move steps (approximate):

〈γ, α1, . . . , αi−1, αi+1, . . . , αk〉 → 〈+fγ, α1, . . . , αi−1, -f, αi+1, . . . , αk〉
〈γ, α1, . . . , αi−1, δ, αi+1, . . . , αk〉 → 〈+fγ, α1, . . . , αi−1, -fδ, αi+1, . . . , αk〉

move steps change something without combining it with anything
Compare with unary CFG rules, or type-raising in CCG, or . . .

128 / 201

A different perspective on CFGs Concatenative and non-concatenative operations MCFGs Back to MGs

Three schemas for merge rules:

〈st, t1, . . . , tk〉 :: 〈γ, α1, . . . , αk〉0 →
s :: 〈=fγ〉1 〈t, t1, . . . , tk〉 :: 〈f, α1, . . . , αk〉n

〈ts, s1, . . . , sj , t1, . . . , tk〉 :: 〈γ, α1, . . . , αj , β1, . . . , βk〉0 →
〈s, s1, . . . , sj〉 :: 〈=fγ, α1, . . . , αj〉0 〈t, t1, . . . , tk〉 :: 〈f, β1, . . . , βk〉n

〈s, s1, . . . , sj , t, t1, . . . , tk〉 :: 〈γ, α1, . . . , αj , δ, β1, . . . , βk〉0 →
〈s, s1, . . . , sj〉 :: 〈=fγ, α1, . . . , αj〉n 〈t, t1, . . . , tk〉 :: 〈fδ, β1, . . . , βk〉n′

Two schemas for move rules:

〈sis, s1, . . . , si−1, si+1, . . . , sk〉 :: 〈γ, α1, . . . , αi−1, αi+1, . . . , αk〉0 →
〈s, s1, . . . , si , . . . , sk〉 :: 〈+fγ, α1, . . . , αi−1, -f, αi+1, . . . , αk〉0

〈s, s1, . . . , si , . . . , sk〉 :: 〈γ, α1, . . . , αi−1, δ, αi+1, . . . , αk〉0 →
〈s, s1, . . . , si , . . . , sk〉 :: 〈+fγ, α1, . . . , αi−1, -fδ, αi+1, . . . , αk〉0

129 / 201

Part 1: Grammars and cognitive hypotheses
What is a grammar?
What can grammars do?
Concrete illustration of a target: Surprisal

Parts 2–4: Assembling the pieces
Minimalist Grammars (MGs)
MGs and MCFGs
Probabilities on MGs

Part 5: Learning and wrap-up
Something slightly different: Learning model
Recap and open questions

Sharpening the empirical claims of generative syntax
through formalization

Tim Hunter — ESSLLI, August 2015

Part 4

Probabilities on MG Derivations

Easy probabilities Different frameworks Problem #1 Problem #2 Solution: Faithfulness to MG operations

Outline

13 Easy probabilities with context-free structure

14 Different frameworks

15 Problem #1 with the naive parametrization

16 Problem #2 with the naive parametrization

17 Solution: Faithfulness to MG operations

132 / 201

Easy probabilities Different frameworks Problem #1 Problem #2 Solution: Faithfulness to MG operations

Outline

13 Easy probabilities with context-free structure

14 Different frameworks

15 Problem #1 with the naive parametrization

16 Problem #2 with the naive parametrization

17 Solution: Faithfulness to MG operations

133 / 201

Easy probabilities Different frameworks Problem #1 Problem #2 Solution: Faithfulness to MG operations

Probabilistic CFGs

“What are the probabilities of the derivations?”
=

“What are the values of λ1, λ2, etc.?”

λ1 S → NP VP
λ2 NP → John
λ3 NP → Mary
λ4 VP → ran
λ5 VP → V NP
λ6 VP → V S
λ7 V → believed
λ8 V → knew

Training algorithm

Training corpus

1.0 S → NP VP
0.3 NP → John
0.7 NP → Mary
0.2 VP → ran
0.5 VP → V NP
0.3 VP → V S
0.4 V → believed
0.6 V → knew

λ5 =
count(VP → V NP)

count(VP)

134 / 201

Easy probabilities Different frameworks Problem #1 Problem #2 Solution: Faithfulness to MG operations

Probabilistic CFGs

“What are the probabilities of the derivations?”
=

“What are the values of λ1, λ2, etc.?”

λ1 S → NP VP
λ2 NP → John
λ3 NP → Mary
λ4 VP → ran
λ5 VP → V NP
λ6 VP → V S
λ7 V → believed
λ8 V → knew

Training algorithm

Training corpus

1.0 S → NP VP
0.3 NP → John
0.7 NP → Mary
0.2 VP → ran
0.5 VP → V NP
0.3 VP → V S
0.4 V → believed
0.6 V → knew

λ5 =
count(VP → V NP)

count(VP)

134 / 201

Easy probabilities Different frameworks Problem #1 Problem #2 Solution: Faithfulness to MG operations

MCFG for an entire Minimalist Grammar
Lexical items:

ε :: 〈=t +wh c〉1
ε :: 〈=t c〉1

will :: 〈=v =d t〉1
often :: 〈=v v〉1

praise :: 〈=d v〉1
marie :: 〈d〉1
pierre :: 〈d〉1
who :: 〈d -wh〉1

Production rules:
〈st, u〉 :: 〈+wh c, -wh〉0 → s :: 〈=t +wh c〉1 〈t, u〉 :: 〈t, -wh〉0

st :: 〈=d t〉0 → s :: 〈=v =d t〉1 t :: 〈v〉0
〈st, u〉 :: 〈=d t, -wh〉0 → s :: 〈=v =d t〉1 〈t, u〉 :: 〈v, -wh〉0

ts :: 〈c〉0 → 〈s, t〉 :: 〈+wh c, -wh〉0
st :: 〈c〉0 → s :: 〈=t c〉1 t :: 〈t〉0
ts :: 〈t〉0 → s :: 〈=d t〉0 t :: 〈d〉1

〈ts, u〉 :: 〈t, -wh〉0 → 〈s, u〉 :: 〈=d t, -wh〉0 t :: 〈d〉1
st :: 〈v〉0 → s :: 〈=d v〉1 t :: 〈d〉1
st :: 〈v〉0 → s :: 〈=v v〉1 t :: 〈v〉0

〈s, t〉 :: 〈v, -wh〉0 → s :: 〈=d v〉1 t :: 〈d -wh〉1
〈st, u〉 :: 〈v, -wh〉0 → s :: 〈=v v〉1 〈t, u〉 :: 〈v, -wh〉0

135 / 201

Easy probabilities Different frameworks Problem #1 Problem #2 Solution: Faithfulness to MG operations

Probabilities on MCFGs

λ1 ts :: 〈c〉0 → 〈s, t〉 :: 〈+wh c, -wh〉0
λ2 st :: 〈c〉0 → s :: 〈=t c〉1 t :: 〈t〉0
λ3 st :: 〈v〉0 → s :: 〈=d v〉1 t :: 〈d〉1
λ4 st :: 〈v〉0 → s :: 〈=v v〉1 t :: 〈v〉0
λ5 〈s, t〉 :: 〈v, -wh〉0 → s :: 〈=d v〉1 t :: 〈d -wh〉1
λ6 〈st, u〉 :: 〈v, -wh〉0 → s :: 〈=v v〉1 〈t, u〉 :: 〈v, -wh〉0

The context-free “backbone” for MG derivations identifies a parametrization for
probability distributions over them.

λ2 =
count

(
〈c〉0 → 〈=t c〉1〈t〉0

)
count

(
〈c〉0
)

Plus: It turns out that the intersect-with-an-FSA trick we used for CFGs also works
for MCFGs!

136 / 201

Easy probabilities Different frameworks Problem #1 Problem #2 Solution: Faithfulness to MG operations

Grammar intersection example (simple)
1.0 S → NP VP
0.3 NP → John
0.7 NP → Mary
0.2 VP → ran
0.5 VP → V NP
0.3 VP → V S
0.4 V → believed
0.6 V → knew

0 1 2
Mary believed

*

1.0 S0,2 → NP0,1 VP1,2
0.7 NP0,1 → Mary
0.5 VP1,2 → V1,2 NP2,2
0.3 VP1,2 → V1,2 S2,2
0.4 V1,2 → believed

1.0 S2,2 → NP2,2 VP2,2
0.3 NP2,2 → John
0.7 NP2,2 → Mary
0.2 VP2,2 → ran
0.5 VP2,2 → V2,2 NP2,2
0.3 VP2,2 → V2,2 S2,2
0.4 V2,2 → believed
0.6 V2,2 → knew

S0,2

VP1,2

NP2,2V1,2
believed

NP0,1
Mary

S0,2

VP1,2

S2,2V1,2
believed

NP0,1
Mary

NB: Total weight in this grammar is not one! (What is it? Start symbol is S0,2.)
Each derivation has the weight “it” had in the original grammar.

137 / 201

Easy probabilities Different frameworks Problem #1 Problem #2 Solution: Faithfulness to MG operations

Beyond context-free

t1t2 :: S → 〈t1, t2〉 :: P
〈t1u1, t2u2〉 :: P → 〈t1, t2〉 :: P 〈u1, u2〉 :: E

〈ε, ε〉 :: P
〈a, a〉 :: E
〈b, b〉 :: E

{
ww | w ∈ {a,b}∗

}

aabaaaba :: S

〈aaba,aaba〉 :: P

〈a,a〉 :: E〈aab,aab〉 :: P

〈b,b〉 :: E〈aa,aa〉 :: P

〈a,a〉 :: E〈a,a〉 :: P

〈a,a〉 :: E〈ε, ε〉 :: P

Unlike in a CFG, we can ensure that the two “halves” are extended in the same
ways without concatenating them together.

138 / 201

Easy probabilities Different frameworks Problem #1 Problem #2 Solution: Faithfulness to MG operations

Intersection with an MCFG

S0,2 → P0,1;1,2
P0,1;1,2 → Pe;e E0,1;1,2
E0,1;1,2 → A0,1 A1,2

S0,2

P0,1;1,2

E0,1;1,2

A1,2A0,1

Pe;e

S0,2 → P0,2;2,2
P0,2;2,2 → P0,2;2,2 E2,2;2,2
P0,2;2,2 → P0,1;2,2 E1,2;2,2
P0,1;2,2 → Pe;2,2 E0,1;2,2
E0,1;2,2 → A0,1 A2,2
E1,2;2,2 → A1,2 A2,2

S0,2

P0,2;2,2

E2,2;2,2P0,2;2,2

E1,2;2,2

A2,2A1,2

P0,1;2,2

E0,1;2,2

A2,2A0,1

Pe;2,2

〈b,b〉 :: E2,2;2,2
〈a,a〉 :: E2,2;2,2
〈ε, ε〉 :: Pe;e
〈ε, ε〉 :: Pe;2,2
a :: A2,2
b :: B2,2

a :: A0,1
a :: A1,2

139 / 201

Easy probabilities Different frameworks Problem #1 Problem #2 Solution: Faithfulness to MG operations

Intersection grammars
1.0 S → NP VP
0.3 NP → John
0.7 NP → Mary
0.2 VP → ran
0.5 VP → V NP
0.3 VP → V S
0.4 V → believed
0.6 V → knew

∩
0 1 2

Mary believed

*

= G2

1.0 S → NP VP
0.3 NP → John
0.7 NP → Mary
0.2 VP → ran
0.5 VP → V NP
0.3 VP → V S
0.4 V → believed
0.6 V → knew

∩
0 1 2 3

Mary believed John

*

= G3

surprisal at ‘John’ = − log P(W3 = John | W1 = Mary,W2 = believed)

= − log
total weight in G3

total weight in G2

= − log
0.0672
0.224

= 1.74

(Lang 1988, Billot and Lang 1989, Hale 2006)
140 / 201

Easy probabilities Different frameworks Problem #1 Problem #2 Solution: Faithfulness to MG operations

Surprisal and entropy reduction

surprisal at ‘John’ = − log P(W3 = John | W1 = Mary,W2 = believed)

= − log
total weight in G3

total weight in G2

entropy reduction at ‘John’ = (entropy of G2)− (entropy of G3)

141 / 201

Easy probabilities Different frameworks Problem #1 Problem #2 Solution: Faithfulness to MG operations

Computing sum of weights in a grammar (“partition function”)

Z(A) =
∑
A→α

(
p(A→ α) · Z(α)

)
Z(ε) = 1

Z(aβ) = Z(β)

Z(Bβ) = Z(B) · Z(β) where β 6= ε

(Nederhof and Satta 2008)

1.0 S → NP VP
0.3 NP → John
0.7 NP → Mary
0.2 VP → ran
0.5 VP → V NP
0.4 V → believed
0.6 V → knew

Z(V) = 0.4 + 0.6 = 1.0
Z(NP) = 0.3 + 0.7 = 1.0
Z(VP) = 0.2 + (0.5 · Z(V) · Z(NP))

= 0.2 + (0.5 · 1.0 · 1.0) = 0.7
Z(S) = 1.0 · Z(NP) · Z(VP)

= 0.7

1.0 S → NP VP
0.3 NP → John
0.7 NP → Mary
0.2 VP → ran
0.5 VP → V NP
0.3 VP → V S
0.4 V → believed
0.6 V → knew

Z(V) = 0.4 + 0.6 = 1.0
Z(NP) = 0.3 + 0.7 = 1.0
Z(VP) = 0.2 + (0.5 · Z(V) · Z(NP)) + (0.3 · Z(V) · Z(S))
Z(S) = 1.0 · Z(NP) · Z(VP)

142 / 201

Easy probabilities Different frameworks Problem #1 Problem #2 Solution: Faithfulness to MG operations

Computing entropy of a grammar

1.0 S → NP VP
0.3 NP → John
0.7 NP → Mary
0.2 VP → ran
0.5 VP → V NP
0.3 VP → V S
0.4 V → believed
0.6 V → knew

h(S) = 0
h(NP) = entropy of (0.3, 0.7)
h(VP) = entropy of (0.2, 0.5, 0.3)
h(V) = entropy of (0.4, 0.6)

H(S) = h(S) + 1.0(H(NP) + H(VP))
H(NP) = h(NP)
H(VP) = h(VP) + 0.2(0) + 0.5(H(V) + H(NP)) + 0.3(H(V) + H(S))
H(V) = h(V)

(Hale 2006)
143 / 201

Easy probabilities Different frameworks Problem #1 Problem #2 Solution: Faithfulness to MG operations

Surprisal and entropy reduction

surprisal at ‘John’ = − log P(W3 = John | W1 = Mary,W2 = believed)

= − log
total weight in G3

total weight in G2

entropy reduction at ‘John’ = (entropy of G2)− (entropy of G3)

144 / 201

Easy probabilities Different frameworks Problem #1 Problem #2 Solution: Faithfulness to MG operations

Putting it all together (Hale 2006)

We can now put entropy reduction/surprisal together with a minimalist grammar
to produce predictions about sentence comprehension difficulty!

complexity metric + grammar −→ prediction

Write an MG that generates sentence types of interest
Convert MG to an MCFG
Add probabilities to MCFG based on corpus frequencies (or whatever else)
Compute intersection grammars for each point in a sentence
Calculate reduction in entropy across the course of the sentence (i.e. workload)

145 / 201

Easy probabilities Different frameworks Problem #1 Problem #2 Solution: Faithfulness to MG operations

Demo

146 / 201

Easy probabilities Different frameworks Problem #1 Problem #2 Solution: Faithfulness to MG operations

Hale (2006)

147 / 201

Easy probabilities Different frameworks Problem #1 Problem #2 Solution: Faithfulness to MG operations

Hale (2006)

they have -ed forget -en that the boy who tell -ed the story be -s so young
the fact that the girl who pay -ed for the ticket be -s very poor doesnt matter
I know that the girl who get -ed the right answer be -s clever
he remember -ed that the man who sell -ed the house leave -ed the town

they have -ed forget -en that the letter which Dick write -ed yesterday be -s long
the fact that the cat which David show -ed to the man like -s eggs be -s strange
I know that the dog which Penny buy -ed today be -s very gentle
he remember -ed that the sweet which David give -ed Sally be -ed a treat

they have -ed forget -en that the man who Ann give -ed the present to be -ed old
the fact that the boy who Paul sell -ed the book to hate -s reading be -s strange
I know that the man who Stephen explain -ed the accident to be -s kind
he remember -ed that the dog which Mary teach -ed the trick to be -s clever

they have -ed forget -en that the box which Pat bring -ed the apple in be -ed lost
the fact that the girl who Sue write -ed the story with be -s proud doesnt matter
I know that the ship which my uncle take -ed Joe on be -ed interesting
he remember -ed that the food which Chris pay -ed the bill for be -ed cheap

they have -ed forget -en that the girl whose friend buy -ed the cake be -ed wait -ing
the fact that the boy whose brother tell -s lies be -s always honest surprise -ed us
I know that the boy whose father sell -ed the dog be -ed very sad
he remember -ed that the girl whose mother send -ed the clothe come -ed too late

they have -ed forget -en that the man whose house Patrick buy -ed be -ed so ill
the fact that the sailor whose ship Jim take -ed have -ed one leg be -s important
I know that the woman whose car Jenny sell -ed be -ed very angry
he remember -ed that the girl whose picture Clare show -ed us be -ed pretty 147 / 201

Easy probabilities Different frameworks Problem #1 Problem #2 Solution: Faithfulness to MG operations

Hale (2006)

147 / 201

Easy probabilities Different frameworks Problem #1 Problem #2 Solution: Faithfulness to MG operations

Hale (2006)

147 / 201

Easy probabilities Different frameworks Problem #1 Problem #2 Solution: Faithfulness to MG operations

Hale (2006)

Hale actually wrote two different MGs:

classical adjunction analysis of relative clauses
Kaynian/promotion analysis

The branching structure of the two MCFGs was different enough to produce
distinct Entropy Reduction predictions. (Same corpus counts!)

The Kaynian/promotion analysis produced a better fit for the Accessibility
Hierarchy facts.
(i.e. holding the complexity metric fixed to argue for a grammar)

But there are some ways in which this method is insensitive to fine details of the
MG formalism.

148 / 201

Easy probabilities Different frameworks Problem #1 Problem #2 Solution: Faithfulness to MG operations

Hale (2006)

Hale actually wrote two different MGs:

classical adjunction analysis of relative clauses
Kaynian/promotion analysis

The branching structure of the two MCFGs was different enough to produce
distinct Entropy Reduction predictions. (Same corpus counts!)

The Kaynian/promotion analysis produced a better fit for the Accessibility
Hierarchy facts.
(i.e. holding the complexity metric fixed to argue for a grammar)

But there are some ways in which this method is insensitive to fine details of the
MG formalism.

148 / 201

Easy probabilities Different frameworks Problem #1 Problem #2 Solution: Faithfulness to MG operations

Outline

13 Easy probabilities with context-free structure

14 Different frameworks

15 Problem #1 with the naive parametrization

16 Problem #2 with the naive parametrization

17 Solution: Faithfulness to MG operations

149 / 201

Easy probabilities Different frameworks Problem #1 Problem #2 Solution: Faithfulness to MG operations

Subtlely different minimalist frameworks

Minimalist grammars with many choices of different bells and whistles can all be expressed
with context-free derivational structure.

Must keep an eye on finiteness of number of types (SMC or equivalent)!
See Stabler (2011)

Some points of variation:

adjunction
head movement
phases
move as re-merge
. . .

Each variant of the formalism expresses a different hypothesis about the set of primitive
grammatical operations. (We are looking for ways to tell these apart!)

The “shapes” of the derivation trees are generally very similar from one variant to
the next.
But variants will make different classifications of the derivational steps involved,
according to which operation is being applied.

150 / 201

Easy probabilities Different frameworks Problem #1 Problem #2 Solution: Faithfulness to MG operations

How to deal with adjuncts?

A normal application of merge?

<

<

cake ::eat ::

often :: v

often :: =v v <

cake ::eat :: v

Or a new kind of feature and distinct operation adjoin?

>

<

cake ::eat :: v

often ::

often :: *v <

cake ::eat :: v

151 / 201

Easy probabilities Different frameworks Problem #1 Problem #2 Solution: Faithfulness to MG operations

How to implement “head movement”?

Modify merge to allow some additional string-shuffling in head-complement
relationships?

>

<

cake ::eats ::

ε :: +k t

-s :: =v +k t <

cake ::eat :: v

Or some combination of normal phrasal movements? (Koopman and Szabolcsi 2000)

T′

XP

X′

VP

tV
eat

X

DP
cake

T
-s

152 / 201

Easy probabilities Different frameworks Problem #1 Problem #2 Solution: Faithfulness to MG operations

How to implement “head movement”?

Modify merge to allow some additional string-shuffling in head-complement
relationships?

>

<

cake ::eats ::

ε :: +k t

-s :: =v +k t <

cake ::eat :: v

Or some combination of normal phrasal movements? (Koopman and Szabolcsi 2000)

T′

XP

X′

VP

tV
eat

X

DP
cake

T
-s

152 / 201

Easy probabilities Different frameworks Problem #1 Problem #2 Solution: Faithfulness to MG operations

How to implement “head movement”?

Modify merge to allow some additional string-shuffling in head-complement
relationships?

>

<

cake ::eats ::

ε :: +k t

-s :: =v +k t <

cake ::eat :: v

Or some combination of normal phrasal movements? (Koopman and Szabolcsi 2000)

T′

XP

X′

VP

tV
eat

X

DP
cake

T
-s

152 / 201

Easy probabilities Different frameworks Problem #1 Problem #2 Solution: Faithfulness to MG operations

Successive cyclic movement?

c

〈+wh c, -wh〉

ε :: =t +wh c 〈t, -wh〉

〈+k t, -k, -wh〉

will :: =v +k t 〈v, -k, -wh〉

〈=subj v, -wh〉

think :: =t =subj v 〈t, -wh〉

〈+k t, -k, -wh〉

will :: =v +k t 〈v, -k, -wh〉

〈=subj v, -wh〉

eat :: =obj =subj v what :: obj -wh

John :: subj -k

Mary :: subj -k

c

〈+wh c, -wh〉

ε :: =t +wh c 〈t, -wh〉

〈+k t, -k, -wh〉

will :: =v +k t 〈v, -k, -wh〉

〈=subj v, -wh〉

think :: =t =subj v 〈t, -wh〉

〈+wh t, -wh -wh〉

〈+k +wh t, -k, -wh -wh〉

will :: =v +k +wh t 〈v, -k, -wh -wh〉

〈=subj v, -wh -wh〉

eat :: =obj =subj v what :: obj -wh -wh

John :: subj -k

Mary :: subj -k

153 / 201

Easy probabilities Different frameworks Problem #1 Problem #2 Solution: Faithfulness to MG operations

Successive cyclic movement?

c

〈+wh c, -wh〉

ε :: =t +wh c 〈t, -wh〉

〈+k t, -k, -wh〉

will :: =v +k t 〈v, -k, -wh〉

〈=subj v, -wh〉

think :: =t =subj v 〈t, -wh〉

〈+k t, -k, -wh〉

will :: =v +k t 〈v, -k, -wh〉

〈=subj v, -wh〉

eat :: =obj =subj v what :: obj -wh

John :: subj -k

Mary :: subj -k

c

〈+wh c, -wh〉

ε :: =t +wh c 〈t, -wh〉

〈+k t, -k, -wh〉

will :: =v +k t 〈v, -k, -wh〉

〈=subj v, -wh〉

think :: =t =subj v 〈t, -wh〉

〈+wh t, -wh -wh〉

〈+k +wh t, -k, -wh -wh〉

will :: =v +k +wh t 〈v, -k, -wh -wh〉

〈=subj v, -wh -wh〉

eat :: =obj =subj v what :: obj -wh -wh

John :: subj -k

Mary :: subj -k

153 / 201

Easy probabilities Different frameworks Problem #1 Problem #2 Solution: Faithfulness to MG operations

Unifying feature-checking (one way)

〈 John will seem to eat cake 〉

〈 will seem to eat cake , John 〉

〈 seem to eat cake , John 〉〈 will 〉

merge

move

〈 John will seem to eat cake 〉

〈 will seem to eat cake , John 〉

〈 will , seem to eat cake , John 〉

〈 will seem to eat cake , John 〉〈 will 〉

insert

mrg

mrg

〈t〉0

〈+k t, -k〉0

〈v, -k〉0〈=v +k t〉1

merge

move

〈-t〉0

〈+k -t, -k〉0

〈+v +k -t, v, -k〉1

〈v, -k〉0〈+v +k -t〉1

insert

mrg

mrg

(Stabler 2006, Hunter 2011) 154 / 201

Easy probabilities Different frameworks Problem #1 Problem #2 Solution: Faithfulness to MG operations

Unifying feature-checking (one way)

〈 John will seem to eat cake 〉

〈 will seem to eat cake , John 〉

〈 seem to eat cake , John 〉〈 will 〉

merge

move

〈 John will seem to eat cake 〉

〈 will seem to eat cake , John 〉

〈 will , seem to eat cake , John 〉

〈 will seem to eat cake , John 〉〈 will 〉

insert

mrg

mrg

〈t〉0

〈+k t, -k〉0

〈v, -k〉0〈=v +k t〉1

merge

move

〈-t〉0

〈+k -t, -k〉0

〈+v +k -t, v, -k〉1

〈v, -k〉0〈+v +k -t〉1

insert

mrg

mrg

(Stabler 2006, Hunter 2011) 154 / 201

Easy probabilities Different frameworks Problem #1 Problem #2 Solution: Faithfulness to MG operations

Three schemas for merge rules:

〈st, t1, . . . , tk〉 :: 〈γ, α1, . . . , αk〉0 →
s :: 〈=fγ〉1 〈t, t1, . . . , tk〉 :: 〈f, α1, . . . , αk〉n

〈ts, s1, . . . , sj , t1, . . . , tk〉 :: 〈γ, α1, . . . , αj , β1, . . . , βk〉0 →
〈s, s1, . . . , sj〉 :: 〈=fγ, α1, . . . , αj〉0 〈t, t1, . . . , tk〉 :: 〈f, β1, . . . , βk〉n

〈s, s1, . . . , sj , t, t1, . . . , tk〉 :: 〈γ, α1, . . . , αj , δ, β1, . . . , βk〉0 →
〈s, s1, . . . , sj〉 :: 〈=fγ, α1, . . . , αj〉n 〈t, t1, . . . , tk〉 :: 〈fδ, β1, . . . , βk〉n′

Two schemas for move rules:

〈sis, s1, . . . , si−1, si+1, . . . , sk〉 :: 〈γ, α1, . . . , αi−1, αi+1, . . . , αk〉0 →
〈s, s1, . . . , si , . . . , sk〉 :: 〈+fγ, α1, . . . , αi−1, -f, αi+1, . . . , αk〉0

〈s, s1, . . . , si , . . . , sk〉 :: 〈γ, α1, . . . , αi−1, δ, αi+1, . . . , αk〉0 →
〈s, s1, . . . , si , . . . , sk〉 :: 〈+fγ, α1, . . . , αi−1, -fδ, αi+1, . . . , αk〉0

155 / 201

Easy probabilities Different frameworks Problem #1 Problem #2 Solution: Faithfulness to MG operations

One schema for insert rules:

〈s, s1, . . . , sj , t, t1, . . . , tk〉 :: 〈+fγ, α1, . . . , αj , -fγ′, β1, . . . , βk〉n →
s, s1, . . . , sj :: 〈+fγ, α1, . . . , αj〉n 〈t, t1, . . . , tk〉 :: 〈-fγ′, β1, . . . , βk〉n′

Three schemas for mrg rules:

〈ssi , s1, . . . , si−1, si+1, . . . , sk〉 :: 〈γ, α1, . . . , αi−1, αi+1, . . . , αk〉0 →
〈s, s1, . . . , si , . . . , sk〉 :: 〈+fγ, α1, . . . , αi−1, -f, αi+1, . . . , αk〉1

〈sis, s1, . . . , si−1, si+1, . . . , sk〉 :: 〈γ, α1, . . . , αi−1, αi+1, . . . , αk〉0 →
〈s, s1, . . . , si , . . . , sk〉 :: 〈+fγ, α1, . . . , αi−1, -f, αi+1, . . . , αk〉0

〈s, s1, . . . , si , . . . , sk〉 :: 〈γ, α1, . . . , αi−1, δ, αi+1, . . . , αk〉0 →
〈s, s1, . . . , si , . . . , sk〉 :: 〈+fγ, α1, . . . , αi−1, -fδ, αi+1, . . . , αk〉0

156 / 201

Easy probabilities Different frameworks Problem #1 Problem #2 Solution: Faithfulness to MG operations

Subtlely different minimalist frameworks

Minimalist grammars with many choices of different bells and whistles can all be expressed
with context-free derivational structure.

Must keep an eye on finiteness of number of types (SMC or equivalent)!
See Stabler (2011)

Some points of variation:

adjunction
head movement
phases
move as re-merge
. . .

Each variant of the formalism expresses a different hypothesis about the set of primitive
grammatical operations. (We are looking for ways to tell these apart!)

The “shapes” of the derivation trees are generally very similar from one variant to
the next.
But variants will make different classifications of the derivational steps involved,
according to which operation is being applied.

157 / 201

Easy probabilities Different frameworks Problem #1 Problem #2 Solution: Faithfulness to MG operations

Subtlely different minimalist frameworks

Minimalist grammars with many choices of different bells and whistles can all be expressed
with context-free derivational structure.

Must keep an eye on finiteness of number of types (SMC or equivalent)!
See Stabler (2011)

Some points of variation:

adjunction
head movement
phases
move as re-merge
. . .

Each variant of the formalism expresses a different hypothesis about the set of primitive
grammatical operations. (We are looking for ways to tell these apart!)

The “shapes” of the derivation trees are generally very similar from one variant to
the next.
But variants will make different classifications of the derivational steps involved,
according to which operation is being applied.

157 / 201

Easy probabilities Different frameworks Problem #1 Problem #2 Solution: Faithfulness to MG operations

Outline

13 Easy probabilities with context-free structure

14 Different frameworks

15 Problem #1 with the naive parametrization

16 Problem #2 with the naive parametrization

17 Solution: Faithfulness to MG operations

158 / 201

Easy probabilities Different frameworks Problem #1 Problem #2 Solution: Faithfulness to MG operations

Probabilities on MCFGs

λ1 ts :: 〈c〉0 → 〈s, t〉 :: 〈+wh c, -wh〉0
λ2 st :: 〈c〉0 → s :: 〈=t c〉1 t :: 〈t〉0
λ3 st :: 〈v〉0 → s :: 〈=d v〉1 t :: 〈d〉1
λ4 st :: 〈v〉0 → s :: 〈=v v〉1 t :: 〈v〉0
λ5 〈s, t〉 :: 〈v, -wh〉0 → s :: 〈=d v〉1 t :: 〈d -wh〉1
λ6 〈st, u〉 :: 〈v, -wh〉0 → s :: 〈=v v〉1 〈t, u〉 :: 〈v, -wh〉0

Training question: What values of λ1, λ2, etc. make the training corpus most
likely?

159 / 201

Easy probabilities Different frameworks Problem #1 Problem #2 Solution: Faithfulness to MG operations

Problem #1 with the naive parametrization
The ‘often’ Grammar: MGoften

pierre :: d who :: d -wh
marie :: d will :: =v =d t
praise :: =d v ε :: =t c
often :: =v v ε :: =t +wh c

Training data
90 pierre will praise marie
5 pierre will often praise marie
1 who pierre will praise
1 who pierre will often praise

st :: 〈v〉0 → s :: 〈=d v〉1 t :: 〈d〉1 0.95
st :: 〈v〉0 → s :: 〈=v v〉1 t :: 〈v〉0 0.05

〈s, t〉 :: 〈v, -wh〉0 → s :: 〈=d v〉1 t :: 〈d -wh〉1 0.67
〈st, u〉 :: 〈v, -wh〉0 → s :: 〈=v v〉1 〈t, u〉 :: 〈v, -wh〉0 0.33

count
(
〈v〉0 → 〈=d v〉1 〈d〉1

)
count

(
〈v〉0
) =

95
100

count
(
〈v,-wh〉0 → 〈=d v〉1 〈d -wh〉1

)
count

(
〈v,-wh〉0

) =
2
3

This training setup doesn’t know which minimalist-grammar operations are being
implemented by the various MCFG rules.

160 / 201

Easy probabilities Different frameworks Problem #1 Problem #2 Solution: Faithfulness to MG operations

Problem #1 with the naive parametrization
The ‘often’ Grammar: MGoften

pierre :: d who :: d -wh
marie :: d will :: =v =d t
praise :: =d v ε :: =t c
often :: =v v ε :: =t +wh c

Training data
90 pierre will praise marie
5 pierre will often praise marie
1 who pierre will praise
1 who pierre will often praise

st :: 〈v〉0 → s :: 〈=d v〉1 t :: 〈d〉1 0.95
st :: 〈v〉0 → s :: 〈=v v〉1 t :: 〈v〉0 0.05

〈s, t〉 :: 〈v, -wh〉0 → s :: 〈=d v〉1 t :: 〈d -wh〉1 0.67
〈st, u〉 :: 〈v, -wh〉0 → s :: 〈=v v〉1 〈t, u〉 :: 〈v, -wh〉0 0.33

count
(
〈v〉0 → 〈=d v〉1 〈d〉1

)
count

(
〈v〉0
) =

95
100

count
(
〈v,-wh〉0 → 〈=d v〉1 〈d -wh〉1

)
count

(
〈v,-wh〉0

) =
2
3

This training setup doesn’t know which minimalist-grammar operations are being
implemented by the various MCFG rules.

160 / 201

Easy probabilities Different frameworks Problem #1 Problem #2 Solution: Faithfulness to MG operations

Generalizations missed by the naive parametrization
>

<

marie ::praise ::

often :: v

v

often :: =v v <

marie ::praise :: v

v

st :: 〈v〉0 → s :: 〈=v v〉1 t :: 〈v〉0

>

<

who :: -whpraise ::

often :: v

v, -wh

often :: =v v <

who :: -whpraise :: v

v, -wh

〈st, u〉 :: 〈v, -wh〉0 → s :: 〈=v v〉1 〈t, u〉 :: 〈v, -wh〉0

161 / 201

Easy probabilities Different frameworks Problem #1 Problem #2 Solution: Faithfulness to MG operations

Generalizations missed by the naive parametrization
>

<

marie ::praise ::

often :: v

v

often :: =v v <

marie ::praise :: v

v

st :: 〈v〉0 → s :: 〈=v v〉1 t :: 〈v〉0

>

<

who :: -whpraise ::

often :: v

v, -wh

often :: =v v <

who :: -whpraise :: v

v, -wh

〈st, u〉 :: 〈v, -wh〉0 → s :: 〈=v v〉1 〈t, u〉 :: 〈v, -wh〉0

161 / 201

Easy probabilities Different frameworks Problem #1 Problem #2 Solution: Faithfulness to MG operations

Problem #1 with the naive parametrization
The ‘often’ Grammar: MGoften

pierre :: d who :: d -wh
marie :: d will :: =v =d t
praise :: =d v ε :: =t c
often :: =v v ε :: =t +wh c

Training data
90 pierre will praise marie
5 pierre will often praise marie
1 who pierre will praise
1 who pierre will often praise

st :: 〈v〉0 → s :: 〈=d v〉1 t :: 〈d〉1 0.95
st :: 〈v〉0 → s :: 〈=v v〉1 t :: 〈v〉0 0.05

〈s, t〉 :: 〈v, -wh〉0 → s :: 〈=d v〉1 t :: 〈d -wh〉1 0.67
〈st, u〉 :: 〈v, -wh〉0 → s :: 〈=v v〉1 〈t, u〉 :: 〈v, -wh〉0 0.33

count
(
〈v〉0 → 〈=d v〉1 〈d〉1

)
count

(
〈v〉0
) =

95
100

count
(
〈v,-wh〉0 → 〈=d v〉1 〈d -wh〉1

)
count

(
〈v,-wh〉0

) =
2
3

This training setup doesn’t know which minimalist-grammar operations are being
implemented by the various MCFG rules.

162 / 201

Easy probabilities Different frameworks Problem #1 Problem #2 Solution: Faithfulness to MG operations

Problem #1 with the naive parametrization
The ‘often’ Grammar: MGoften

pierre :: d who :: d -wh
marie :: d will :: =v =d t
praise :: =d v ε :: =t c
often :: =v v ε :: =t +wh c

Training data
90 pierre will praise marie
5 pierre will often praise marie
1 who pierre will praise
1 who pierre will often praise

st :: 〈v〉0 → s :: 〈=d v〉1 t :: 〈d〉1 0.95
st :: 〈v〉0 → s :: 〈=v v〉1 t :: 〈v〉0 0.05

〈s, t〉 :: 〈v, -wh〉0 → s :: 〈=d v〉1 t :: 〈d -wh〉1 0.67
〈st, u〉 :: 〈v, -wh〉0 → s :: 〈=v v〉1 〈t, u〉 :: 〈v, -wh〉0 0.33

count
(
〈v〉0 → 〈=d v〉1 〈d〉1

)
count

(
〈v〉0
) =

95
100

count
(
〈v,-wh〉0 → 〈=d v〉1 〈d -wh〉1

)
count

(
〈v,-wh〉0

) =
2
3

This training setup doesn’t know which minimalist-grammar operations are being
implemented by the various MCFG rules.

162 / 201

Easy probabilities Different frameworks Problem #1 Problem #2 Solution: Faithfulness to MG operations

Naive parametrization

MGoften
Naive

parametrization

Training corpus

0.95
0.05
0.67
0.33

MGshave
Naive

parametrization

Training corpus

Naive
parametrizationIMGshave

0.48
0.24
0.14
0.10
0.05

0.48
0.24
0.14
0.10
0.05

Smarter parametrization

MGoften
Smarter

parametrization

Training corpus

0.94
0.06
0.94
0.06

MGshave
Smarter

parametrization

Training corpus

Smarter
parametrizationIMGshave

0.35
0.35
0.15
0.05
0.05
0.04

0.36
0.36
0.10
0.10
0.05
0.05

163 / 201

Easy probabilities Different frameworks Problem #1 Problem #2 Solution: Faithfulness to MG operations

Outline

13 Easy probabilities with context-free structure

14 Different frameworks

15 Problem #1 with the naive parametrization

16 Problem #2 with the naive parametrization

17 Solution: Faithfulness to MG operations

164 / 201

Easy probabilities Different frameworks Problem #1 Problem #2 Solution: Faithfulness to MG operations

A (slightly) more complicated grammar: MGshave

ε :: =t c
ε :: =t +wh c
will :: =v =subj t
shave :: v
shave :: =obj v
boys :: subj
who :: subj -wh

boys :: =x =det subj
ε :: x
some :: det

themselves :: =ant obj
ε :: =subj ant -subj
will :: =v +subj t

boys will shave
boys will shave themselves
who will shave
who will shave themselves
some boys will shave
some boys will shave themselves

Some details:

Subject is base-generated in SpecTP; no movement for Case
Transitive and intransitive versions of shave
some is a determiner that optionally combines with boys to make a subject

Dummy feature x to fill complement of boys so that some goes on the left
themselves can appear in object position, via a movement theory of reflexives

A subj can be turned into an ant -subj
themselves combines with an ant to make an obj
will can attract its subject by move as well as merge

165 / 201

Easy probabilities Different frameworks Problem #1 Problem #2 Solution: Faithfulness to MG operations

>

<

ε ::boys :: subj

some ::

<

ε ::boys :: =det subj

boys :: =x =det subj ε :: x

some :: det

<

<

boys ::ε :: -subj

themselves :: obj

themselves :: =ant obj <

boys ::ε :: ant -subj

ε :: =subj ant -subj boys :: subj

166 / 201

Easy probabilities Different frameworks Problem #1 Problem #2 Solution: Faithfulness to MG operations

Choice points in the MG-derived MCFG

Question or not?
〈c〉0 → 〈=t c〉0 〈t〉0

exp(λmerge + λt)

〈c〉0 → 〈+wh c, -wh〉0

exp(λmove + λwh)

Antecedent lexical or complex?
〈ant -subj〉0 → 〈=subj ant -subj〉1 〈subj〉0

exp(λmerge + λsubj)

〈ant -subj〉0 → 〈=subj ant -subj〉1 〈subj〉1

exp(λmerge + λsubj)

Non-wh subject merged and complex, merged and lexical, or moved?
〈t〉0 → 〈=subj t〉0 〈subj〉0

exp(λmerge + λsubj)

〈t〉0 → 〈=subj t〉0 〈subj〉1

exp(λmerge + λsubj)

〈t〉0 → 〈+subj t, -subj〉0

exp(λmove + λsubj)

Wh-phrase same as moving subject or separated because of doubling?
〈t, -wh〉0 → 〈=subj t〉0 〈subj -wh〉1

exp(λmerge + λsubj)

〈t, -wh〉0 → 〈+subj t, -subj, -wh〉0

exp(λmove + λsubj)

167 / 201

Easy probabilities Different frameworks Problem #1 Problem #2 Solution: Faithfulness to MG operations

Choice points in the IMG-derived MCFG

Question or not?
〈-c〉0 → 〈+t -c, -t〉1

exp(λmrg + λt)

〈-c〉0 → 〈+wh -c, -wh〉0

exp(λmrg + λwh)

Antecedent lexical or complex?
〈+subj -ant -subj, -subj〉0 → 〈+subj -ant -subj〉0 〈-subj〉0

exp(λinsert)

〈+subj -ant -subj, -subj〉0 → 〈+subj -ant -subj〉0 〈-subj〉1

exp(λinsert)

Non-wh subject merged and complex, merged and lexical, or moved?
〈+subj -t, -subj〉0 → 〈+subj -t〉0 〈-subj〉0

exp(λinsert)

〈+subj -t, -subj〉0 → 〈+subj -t〉0 〈-subj〉1

exp(λinsert)

〈+subj -t, -subj〉0 → 〈+v +subj -t, -v, -subj〉1

exp(λmrg + λv)

Wh-phrase same as moving subject or separated because of doubling?
〈-t, -wh〉0 → 〈+subj -t, -subj -wh〉0

exp(λmrg + λsubj)

〈-t, -wh〉0 → 〈+subj -t, -subj, -wh〉0

exp(λmrg + λsubj)

168 / 201

Easy probabilities Different frameworks Problem #1 Problem #2 Solution: Faithfulness to MG operations

Problem #2 with the naive parametrization

“normal” MG

“re-merge” MG

MCFG

MCFG

Language of both grammars

boys will shave
boys will shave themselves
who will shave
who will shave themselves
some boys will shave
some boys will shave themselves

Training data

10 boys will shave
2 boys will shave themselves
3 who will shave
1 who will shave themselves
5 some boys will shave

MGshave, i.e. merge and move distinct
0.47619 boys will shave
0.238095 some boys will shave
0.142857 who will shave
0.0952381 boys will shave themselves
0.047619 who will shave themselves

IMGshave, i.e. merge and move unified
0.47619 boys will shave
0.238095 some boys will shave
0.142857 who will shave
0.0952381 boys will shave themselves
0.047619 who will shave themselves

This treatment of probabilities doesn’t know which derivational operations are
being implemented by the various MCFG rules.

So the probabilities are unaffected by changes in set of primitive operations.

169 / 201

Easy probabilities Different frameworks Problem #1 Problem #2 Solution: Faithfulness to MG operations

Problem #2 with the naive parametrization

“normal” MG

“re-merge” MG

MCFG

MCFG

Language of both grammars

boys will shave
boys will shave themselves
who will shave
who will shave themselves
some boys will shave
some boys will shave themselves

Training data

10 boys will shave
2 boys will shave themselves
3 who will shave
1 who will shave themselves
5 some boys will shave

MGshave, i.e. merge and move distinct
0.47619 boys will shave
0.238095 some boys will shave
0.142857 who will shave
0.0952381 boys will shave themselves
0.047619 who will shave themselves

IMGshave, i.e. merge and move unified
0.47619 boys will shave
0.238095 some boys will shave
0.142857 who will shave
0.0952381 boys will shave themselves
0.047619 who will shave themselves

This treatment of probabilities doesn’t know which derivational operations are
being implemented by the various MCFG rules.

So the probabilities are unaffected by changes in set of primitive operations.

169 / 201

Easy probabilities Different frameworks Problem #1 Problem #2 Solution: Faithfulness to MG operations

Problem #2 with the naive parametrization

“normal” MG

“re-merge” MG

MCFG

MCFG

Language of both grammars

boys will shave
boys will shave themselves
who will shave
who will shave themselves
some boys will shave
some boys will shave themselves

Training data

10 boys will shave
2 boys will shave themselves
3 who will shave
1 who will shave themselves
5 some boys will shave

MGshave, i.e. merge and move distinct
0.47619 boys will shave
0.238095 some boys will shave
0.142857 who will shave
0.0952381 boys will shave themselves
0.047619 who will shave themselves

IMGshave, i.e. merge and move unified
0.47619 boys will shave
0.238095 some boys will shave
0.142857 who will shave
0.0952381 boys will shave themselves
0.047619 who will shave themselves

This treatment of probabilities doesn’t know which derivational operations are
being implemented by the various MCFG rules.

So the probabilities are unaffected by changes in set of primitive operations.

169 / 201

Easy probabilities Different frameworks Problem #1 Problem #2 Solution: Faithfulness to MG operations

Problem #2 with the naive parametrization

“normal” MG

“re-merge” MG

MCFG

MCFG

Language of both grammars

boys will shave
boys will shave themselves
who will shave
who will shave themselves
some boys will shave
some boys will shave themselves

Training data

10 boys will shave
2 boys will shave themselves
3 who will shave
1 who will shave themselves
5 some boys will shave

MGshave, i.e. merge and move distinct
0.47619 boys will shave
0.238095 some boys will shave
0.142857 who will shave
0.0952381 boys will shave themselves
0.047619 who will shave themselves

IMGshave, i.e. merge and move unified
0.47619 boys will shave
0.238095 some boys will shave
0.142857 who will shave
0.0952381 boys will shave themselves
0.047619 who will shave themselves

This treatment of probabilities doesn’t know which derivational operations are
being implemented by the various MCFG rules.

So the probabilities are unaffected by changes in set of primitive operations.

169 / 201

Easy probabilities Different frameworks Problem #1 Problem #2 Solution: Faithfulness to MG operations

Naive parametrization

MGoften
Naive

parametrization

Training corpus

0.95
0.05
0.67
0.33

MGshave
Naive

parametrization

Training corpus

Naive
parametrizationIMGshave

0.48
0.24
0.14
0.10
0.05

0.48
0.24
0.14
0.10
0.05

Smarter parametrization

MGoften
Smarter

parametrization

Training corpus

0.94
0.06
0.94
0.06

MGshave
Smarter

parametrization

Training corpus

Smarter
parametrizationIMGshave

0.35
0.35
0.15
0.05
0.05
0.04

0.36
0.36
0.10
0.10
0.05
0.05

170 / 201

Easy probabilities Different frameworks Problem #1 Problem #2 Solution: Faithfulness to MG operations

Outline

13 Easy probabilities with context-free structure

14 Different frameworks

15 Problem #1 with the naive parametrization

16 Problem #2 with the naive parametrization

17 Solution: Faithfulness to MG operations

171 / 201

Easy probabilities Different frameworks Problem #1 Problem #2 Solution: Faithfulness to MG operations

The smarter parametrization

Solution: Have a rule’s probability be a function of (only) “what it does”
merge or move
what feature is being checked (either movement or selection)

MCFG Rule φmerge φd φv φt φmove φwh
st :: 〈c〉0 → s :: 〈=t c〉1 t :: 〈t〉0 1 0 0 1 0 0
ts :: 〈c〉0 → 〈s, t〉 :: 〈+wh c, -wh〉0 0 0 0 0 1 1
st :: 〈v〉0 → s :: 〈=d v〉1 t :: 〈d〉1 1 1 0 0 0 0
st :: 〈v〉0 → s :: 〈=v v〉1 t :: 〈v〉0 1 0 1 0 0 0

〈s, t〉 :: 〈v, -wh〉0 → s :: 〈=d v〉1 t :: 〈d -wh〉1 1 1 0 0 0 0
〈st, u〉 :: 〈v, -wh〉0 → s :: 〈=v v〉1 〈t, u〉 :: 〈v, -wh〉0 1 0 1 0 0 0

Each rule r is assigned a score as a function of the vector φ(r):
s(r) = exp(λ · φ(r))

= exp(λmerge φmerge(r) + λd φd(r) + λv φv(r) + . . .)

s(r1) = exp(λmerge + λt)

s(r2) = exp(λmove + λwh)

s(r3) = exp(λmerge + λd)

s(r5) = exp(λmerge + λd)

(Hunter and Dyer 2013)
172 / 201

Easy probabilities Different frameworks Problem #1 Problem #2 Solution: Faithfulness to MG operations

The smarter parametrization

Solution: Have a rule’s probability be a function of (only) “what it does”
merge or move
what feature is being checked (either movement or selection)

MCFG Rule φmerge φd φv φt φmove φwh
st :: 〈c〉0 → s :: 〈=t c〉1 t :: 〈t〉0 1 0 0 1 0 0
ts :: 〈c〉0 → 〈s, t〉 :: 〈+wh c, -wh〉0 0 0 0 0 1 1
st :: 〈v〉0 → s :: 〈=d v〉1 t :: 〈d〉1 1 1 0 0 0 0
st :: 〈v〉0 → s :: 〈=v v〉1 t :: 〈v〉0 1 0 1 0 0 0

〈s, t〉 :: 〈v, -wh〉0 → s :: 〈=d v〉1 t :: 〈d -wh〉1 1 1 0 0 0 0
〈st, u〉 :: 〈v, -wh〉0 → s :: 〈=v v〉1 〈t, u〉 :: 〈v, -wh〉0 1 0 1 0 0 0

Each rule r is assigned a score as a function of the vector φ(r):
s(r) = exp(λ · φ(r))

= exp(λmerge φmerge(r) + λd φd(r) + λv φv(r) + . . .)

s(r1) = exp(λmerge + λt)

s(r2) = exp(λmove + λwh)

s(r3) = exp(λmerge + λd)

s(r5) = exp(λmerge + λd)

(Hunter and Dyer 2013)
172 / 201

Easy probabilities Different frameworks Problem #1 Problem #2 Solution: Faithfulness to MG operations

The smarter parametrization

Solution: Have a rule’s probability be a function of (only) “what it does”
merge or move
what feature is being checked (either movement or selection)

MCFG Rule φmerge φd φv φt φmove φwh
st :: 〈c〉0 → s :: 〈=t c〉1 t :: 〈t〉0 1 0 0 1 0 0
ts :: 〈c〉0 → 〈s, t〉 :: 〈+wh c, -wh〉0 0 0 0 0 1 1
st :: 〈v〉0 → s :: 〈=d v〉1 t :: 〈d〉1 1 1 0 0 0 0
st :: 〈v〉0 → s :: 〈=v v〉1 t :: 〈v〉0 1 0 1 0 0 0

〈s, t〉 :: 〈v, -wh〉0 → s :: 〈=d v〉1 t :: 〈d -wh〉1 1 1 0 0 0 0
〈st, u〉 :: 〈v, -wh〉0 → s :: 〈=v v〉1 〈t, u〉 :: 〈v, -wh〉0 1 0 1 0 0 0

Each rule r is assigned a score as a function of the vector φ(r):
s(r) = exp(λ · φ(r))

= exp(λmerge φmerge(r) + λd φd(r) + λv φv(r) + . . .)

s(r1) = exp(λmerge + λt)

s(r2) = exp(λmove + λwh)

s(r3) = exp(λmerge + λd)

s(r5) = exp(λmerge + λd)

(Hunter and Dyer 2013)
172 / 201

Easy probabilities Different frameworks Problem #1 Problem #2 Solution: Faithfulness to MG operations

The smarter parametrization

Solution: Have a rule’s probability be a function of (only) “what it does”
merge or move
what feature is being checked (either movement or selection)

MCFG Rule φmerge φd φv φt φmove φwh
st :: 〈c〉0 → s :: 〈=t c〉1 t :: 〈t〉0 1 0 0 1 0 0
ts :: 〈c〉0 → 〈s, t〉 :: 〈+wh c, -wh〉0 0 0 0 0 1 1
st :: 〈v〉0 → s :: 〈=d v〉1 t :: 〈d〉1 1 1 0 0 0 0
st :: 〈v〉0 → s :: 〈=v v〉1 t :: 〈v〉0 1 0 1 0 0 0

〈s, t〉 :: 〈v, -wh〉0 → s :: 〈=d v〉1 t :: 〈d -wh〉1 1 1 0 0 0 0
〈st, u〉 :: 〈v, -wh〉0 → s :: 〈=v v〉1 〈t, u〉 :: 〈v, -wh〉0 1 0 1 0 0 0

Each rule r is assigned a score as a function of the vector φ(r):
s(r) = exp(λ · φ(r))

= exp(λmerge φmerge(r) + λd φd(r) + λv φv(r) + . . .)

s(r1) = exp(λmerge + λt)

s(r2) = exp(λmove + λwh)

s(r3) = exp(λmerge + λd)

s(r5) = exp(λmerge + λd)

(Hunter and Dyer 2013)
172 / 201

Easy probabilities Different frameworks Problem #1 Problem #2 Solution: Faithfulness to MG operations

The smarter parametrization

Solution: Have a rule’s probability be a function of (only) “what it does”
merge or move
what feature is being checked (either movement or selection)

MCFG Rule φmerge φd φv φt φmove φwh
st :: 〈c〉0 → s :: 〈=t c〉1 t :: 〈t〉0 1 0 0 1 0 0
ts :: 〈c〉0 → 〈s, t〉 :: 〈+wh c, -wh〉0 0 0 0 0 1 1
st :: 〈v〉0 → s :: 〈=d v〉1 t :: 〈d〉1 1 1 0 0 0 0
st :: 〈v〉0 → s :: 〈=v v〉1 t :: 〈v〉0 1 0 1 0 0 0

〈s, t〉 :: 〈v, -wh〉0 → s :: 〈=d v〉1 t :: 〈d -wh〉1 1 1 0 0 0 0
〈st, u〉 :: 〈v, -wh〉0 → s :: 〈=v v〉1 〈t, u〉 :: 〈v, -wh〉0 1 0 1 0 0 0

Each rule r is assigned a score as a function of the vector φ(r):
s(r) = exp(λ · φ(r))

= exp(λmerge φmerge(r) + λd φd(r) + λv φv(r) + . . .)

s(r1) = exp(λmerge + λt)

s(r2) = exp(λmove + λwh)

s(r3) = exp(λmerge + λd)

s(r5) = exp(λmerge + λd)

(Hunter and Dyer 2013)
172 / 201

Easy probabilities Different frameworks Problem #1 Problem #2 Solution: Faithfulness to MG operations

The smarter parametrization

Solution: Have a rule’s probability be a function of (only) “what it does”
merge or move
what feature is being checked (either movement or selection)

MCFG Rule φmerge φd φv φt φmove φwh
st :: 〈c〉0 → s :: 〈=t c〉1 t :: 〈t〉0 1 0 0 1 0 0
ts :: 〈c〉0 → 〈s, t〉 :: 〈+wh c, -wh〉0 0 0 0 0 1 1
st :: 〈v〉0 → s :: 〈=d v〉1 t :: 〈d〉1 1 1 0 0 0 0
st :: 〈v〉0 → s :: 〈=v v〉1 t :: 〈v〉0 1 0 1 0 0 0

〈s, t〉 :: 〈v, -wh〉0 → s :: 〈=d v〉1 t :: 〈d -wh〉1 1 1 0 0 0 0
〈st, u〉 :: 〈v, -wh〉0 → s :: 〈=v v〉1 〈t, u〉 :: 〈v, -wh〉0 1 0 1 0 0 0

Each rule r is assigned a score as a function of the vector φ(r):
s(r) = exp(λ · φ(r))

= exp(λmerge φmerge(r) + λd φd(r) + λv φv(r) + . . .)

s(r1) = exp(λmerge + λt)

s(r2) = exp(λmove + λwh)

s(r3) = exp(λmerge + λd)

s(r5) = exp(λmerge + λd)

(Hunter and Dyer 2013)
172 / 201

Easy probabilities Different frameworks Problem #1 Problem #2 Solution: Faithfulness to MG operations

Generalizations missed by the naive parametrization
>

<

marie ::praise ::

often :: v

v

often :: =v v <

marie ::praise :: v

v

st :: 〈v〉0 → s :: 〈=v v〉1 t :: 〈v〉0

>

<

who :: -whpraise ::

often :: v

v, -wh

often :: =v v <

who :: -whpraise :: v

v, -wh

〈st, u〉 :: 〈v, -wh〉0 → s :: 〈=v v〉1 〈t, u〉 :: 〈v, -wh〉0

173 / 201

Easy probabilities Different frameworks Problem #1 Problem #2 Solution: Faithfulness to MG operations

Generalizations missed by the naive parametrization
>

<

marie ::praise ::

often :: v

v

often :: =v v <

marie ::praise :: v

v

st :: 〈v〉0 → s :: 〈=v v〉1 t :: 〈v〉0

>

<

who :: -whpraise ::

often :: v

v, -wh

often :: =v v <

who :: -whpraise :: v

v, -wh

〈st, u〉 :: 〈v, -wh〉0 → s :: 〈=v v〉1 〈t, u〉 :: 〈v, -wh〉0

173 / 201

Easy probabilities Different frameworks Problem #1 Problem #2 Solution: Faithfulness to MG operations

Comparison

The old way:
λ1 ts :: 〈c〉0 → 〈s, t〉 :: 〈+wh c, -wh〉0
λ2 st :: 〈c〉0 → s :: 〈=t c〉1 t :: 〈t〉0
λ3 st :: 〈v〉0 → s :: 〈=d v〉1 t :: 〈d〉1
λ4 st :: 〈v〉0 → s :: 〈=v v〉1 t :: 〈v〉0
λ5 〈s, t〉 :: 〈v, -wh〉0 → s :: 〈=d v〉1 t :: 〈d -wh〉1
λ6 〈st, u〉 :: 〈v, -wh〉0 → s :: 〈=v v〉1 〈t, u〉 :: 〈v, -wh〉0

Training question: What values of λ1, λ2, etc. make the training corpus most likely?

The new way:
exp(λmove + λwh) ts :: 〈c〉0 → 〈s, t〉 :: 〈+wh c, -wh〉0
exp(λmerge + λt) st :: 〈c〉0 → s :: 〈=t c〉1 t :: 〈t〉0
exp(λmerge + λd) st :: 〈v〉0 → s :: 〈=d v〉1 t :: 〈d〉1
exp(λmerge + λv) st :: 〈v〉0 → s :: 〈=v v〉1 t :: 〈v〉0
exp(λmerge + λd) 〈s, t〉 :: 〈v, -wh〉0 → s :: 〈=d v〉1 t :: 〈d -wh〉1
exp(λmerge + λv) 〈st, u〉 :: 〈v, -wh〉0 → s :: 〈=v v〉1 〈t, u〉 :: 〈v, -wh〉0

Training question: What values of λmerge, λmove, λd, etc. make the training corpus most
likely?

174 / 201

Easy probabilities Different frameworks Problem #1 Problem #2 Solution: Faithfulness to MG operations

Solution #1 with the smarter parametrization

Grammar
pierre :: d who :: d -wh
marie :: d will :: =v =d t
praise :: =d v ε :: =t c
often :: =v v ε :: =t +wh c

Training data
90 pierre will praise marie
5 pierre will often praise marie
1 who pierre will praise
1 who pierre will often praise

Maximise likelihood via stochastic gradient ascent:
Pλ(N → δ) =

exp(λ · φ(N → δ))∑
exp(λ · φ(N → δ′))

naive smarter
st :: 〈v〉0 → s :: 〈=d v〉1 t :: 〈d〉1 0.95 0.94
st :: 〈v〉0 → s :: 〈=v v〉1 t :: 〈v〉0 0.05 0.06

〈s, t〉 :: 〈v, -wh〉0 → s :: 〈=d v〉1 t :: 〈d -wh〉1 0.67 0.94
〈st, u〉 :: 〈v, -wh〉0 → s :: 〈=v v〉1 〈t, u〉 :: 〈v, -wh〉0 0.33 0.06

175 / 201

Easy probabilities Different frameworks Problem #1 Problem #2 Solution: Faithfulness to MG operations

Solution #1 with the smarter parametrization

Grammar
pierre :: d who :: d -wh
marie :: d will :: =v =d t
praise :: =d v ε :: =t c
often :: =v v ε :: =t +wh c

Training data
90 pierre will praise marie
5 pierre will often praise marie
1 who pierre will praise
1 who pierre will often praise

Maximise likelihood via stochastic gradient ascent:
Pλ(N → δ) =

exp(λ · φ(N → δ))∑
exp(λ · φ(N → δ′))

naive smarter
st :: 〈v〉0 → s :: 〈=d v〉1 t :: 〈d〉1 0.95 0.94
st :: 〈v〉0 → s :: 〈=v v〉1 t :: 〈v〉0 0.05 0.06

〈s, t〉 :: 〈v, -wh〉0 → s :: 〈=d v〉1 t :: 〈d -wh〉1 0.67 0.94
〈st, u〉 :: 〈v, -wh〉0 → s :: 〈=v v〉1 〈t, u〉 :: 〈v, -wh〉0 0.33 0.06

175 / 201

Easy probabilities Different frameworks Problem #1 Problem #2 Solution: Faithfulness to MG operations

Naive parametrization

MGoften
Naive

parametrization

Training corpus

0.95
0.05
0.67
0.33

MGshave
Naive

parametrization

Training corpus

Naive
parametrizationIMGshave

0.48
0.24
0.14
0.10
0.05

0.48
0.24
0.14
0.10
0.05

Smarter parametrization

MGoften
Smarter

parametrization

Training corpus

0.94
0.06
0.94
0.06

MGshave
Smarter

parametrization

Training corpus

Smarter
parametrizationIMGshave

0.35
0.35
0.15
0.05
0.05
0.04

0.36
0.36
0.10
0.10
0.05
0.05

176 / 201

Easy probabilities Different frameworks Problem #1 Problem #2 Solution: Faithfulness to MG operations

Solution #2 with the smarter parametrization

“normal” MG

“re-merge” MG

MCFG

MCFG

Language of both grammars

boys will shave
boys will shave themselves
who will shave
who will shave themselves
some boys will shave
some boys will shave themselves

Training data

10 boys will shave
2 boys will shave themselves
3 who will shave
1 who will shave themselves
5 some boys will shave

MGshave, i.e. merge and move distinct

0.35478 boys will shave
0.35478 some boys will shave
0.14801 who will shave
0.05022 boys will shave themselves
0.05022 some boys will shave themselves
0.04199 who will shave themselves

IMGshave, i.e. merge and move unified

0.35721 boys will shave
0.35721 some boys will shave
0.095 who will shave
0.095 who will shave themselves
0.04779 boys will shave themselves
0.04779 some boys will shave themselves

177 / 201

Easy probabilities Different frameworks Problem #1 Problem #2 Solution: Faithfulness to MG operations

Solution #2 with the smarter parametrization

“normal” MG

“re-merge” MG

MCFG

MCFG

Language of both grammars

boys will shave
boys will shave themselves
who will shave
who will shave themselves
some boys will shave
some boys will shave themselves

Training data

10 boys will shave
2 boys will shave themselves
3 who will shave
1 who will shave themselves
5 some boys will shave

MGshave, i.e. merge and move distinct

0.35478 boys will shave
0.35478 some boys will shave
0.14801 who will shave
0.05022 boys will shave themselves
0.05022 some boys will shave themselves
0.04199 who will shave themselves

IMGshave, i.e. merge and move unified

0.35721 boys will shave
0.35721 some boys will shave
0.095 who will shave
0.095 who will shave themselves
0.04779 boys will shave themselves
0.04779 some boys will shave themselves

177 / 201

Easy probabilities Different frameworks Problem #1 Problem #2 Solution: Faithfulness to MG operations

Solution #2 with the smarter parametrization

“normal” MG

“re-merge” MG

MCFG

MCFG

Language of both grammars

boys will shave
boys will shave themselves
who will shave
who will shave themselves
some boys will shave
some boys will shave themselves

Training data

10 boys will shave
2 boys will shave themselves
3 who will shave
1 who will shave themselves
5 some boys will shave

MGshave, i.e. merge and move distinct

0.35478 boys will shave
0.35478 some boys will shave
0.14801 who will shave
0.05022 boys will shave themselves
0.05022 some boys will shave themselves
0.04199 who will shave themselves

IMGshave, i.e. merge and move unified

0.35721 boys will shave
0.35721 some boys will shave
0.095 who will shave
0.095 who will shave themselves
0.04779 boys will shave themselves
0.04779 some boys will shave themselves

177 / 201

Easy probabilities Different frameworks Problem #1 Problem #2 Solution: Faithfulness to MG operations

Naive parametrization

MGoften
Naive

parametrization

Training corpus

0.95
0.05
0.67
0.33

MGshave
Naive

parametrization

Training corpus

Naive
parametrizationIMGshave

0.48
0.24
0.14
0.10
0.05

0.48
0.24
0.14
0.10
0.05

Smarter parametrization

MGoften
Smarter

parametrization

Training corpus

0.94
0.06
0.94
0.06

MGshave
Smarter

parametrization

Training corpus

Smarter
parametrizationIMGshave

0.35
0.35
0.15
0.05
0.05
0.04

0.36
0.36
0.10
0.10
0.05
0.05

178 / 201

Easy probabilities Different frameworks Problem #1 Problem #2 Solution: Faithfulness to MG operations

Choice points in the MG-derived MCFG

Question or not?
〈c〉0 → 〈=t c〉0 〈t〉0

exp(λmerge + λt)

〈c〉0 → 〈+wh c, -wh〉0

exp(λmove + λwh)

Antecedent lexical or complex?
〈ant -subj〉0 → 〈=subj ant -subj〉1 〈subj〉0

exp(λmerge + λsubj)

〈ant -subj〉0 → 〈=subj ant -subj〉1 〈subj〉1

exp(λmerge + λsubj)

Non-wh subject merged and complex, merged and lexical, or moved?
〈t〉0 → 〈=subj t〉0 〈subj〉0

exp(λmerge + λsubj)

〈t〉0 → 〈=subj t〉0 〈subj〉1

exp(λmerge + λsubj)

〈t〉0 → 〈+subj t, -subj〉0

exp(λmove + λsubj)

Wh-phrase same as moving subject or separated because of doubling?
〈t, -wh〉0 → 〈=subj t〉0 〈subj -wh〉1

exp(λmerge + λsubj)

〈t, -wh〉0 → 〈+subj t, -subj, -wh〉0

exp(λmove + λsubj)

179 / 201

Easy probabilities Different frameworks Problem #1 Problem #2 Solution: Faithfulness to MG operations

Choice points in the MG-derived MCFG

Question or not?
〈c〉0 → 〈=t c〉0 〈t〉0 exp(λmerge + λt)
〈c〉0 → 〈+wh c, -wh〉0 exp(λmove + λwh)

Antecedent lexical or complex?
〈ant -subj〉0 → 〈=subj ant -subj〉1 〈subj〉0 exp(λmerge + λsubj)
〈ant -subj〉0 → 〈=subj ant -subj〉1 〈subj〉1 exp(λmerge + λsubj)

Non-wh subject merged and complex, merged and lexical, or moved?
〈t〉0 → 〈=subj t〉0 〈subj〉0 exp(λmerge + λsubj)
〈t〉0 → 〈=subj t〉0 〈subj〉1 exp(λmerge + λsubj)
〈t〉0 → 〈+subj t, -subj〉0 exp(λmove + λsubj)

Wh-phrase same as moving subject or separated because of doubling?
〈t, -wh〉0 → 〈=subj t〉0 〈subj -wh〉1 exp(λmerge + λsubj)
〈t, -wh〉0 → 〈+subj t, -subj, -wh〉0 exp(λmove + λsubj)

179 / 201

Easy probabilities Different frameworks Problem #1 Problem #2 Solution: Faithfulness to MG operations

Choice points in the IMG-derived MCFG

Question or not?
〈-c〉0 → 〈+t -c, -t〉1

exp(λmrg + λt)

〈-c〉0 → 〈+wh -c, -wh〉0

exp(λmrg + λwh)

Antecedent lexical or complex?
〈+subj -ant -subj, -subj〉0 → 〈+subj -ant -subj〉0 〈-subj〉0

exp(λinsert)

〈+subj -ant -subj, -subj〉0 → 〈+subj -ant -subj〉0 〈-subj〉1

exp(λinsert)

Non-wh subject merged and complex, merged and lexical, or moved?
〈+subj -t, -subj〉0 → 〈+subj -t〉0 〈-subj〉0

exp(λinsert)

〈+subj -t, -subj〉0 → 〈+subj -t〉0 〈-subj〉1

exp(λinsert)

〈+subj -t, -subj〉0 → 〈+v +subj -t, -v, -subj〉1

exp(λmrg + λv)

Wh-phrase same as moving subject or separated because of doubling?
〈-t, -wh〉0 → 〈+subj -t, -subj -wh〉0

exp(λmrg + λsubj)

〈-t, -wh〉0 → 〈+subj -t, -subj, -wh〉0

exp(λmrg + λsubj)

180 / 201

Easy probabilities Different frameworks Problem #1 Problem #2 Solution: Faithfulness to MG operations

Choice points in the IMG-derived MCFG

Question or not?
〈-c〉0 → 〈+t -c, -t〉1 exp(λmrg + λt)
〈-c〉0 → 〈+wh -c, -wh〉0 exp(λmrg + λwh)

Antecedent lexical or complex?
〈+subj -ant -subj, -subj〉0 → 〈+subj -ant -subj〉0 〈-subj〉0 exp(λinsert)
〈+subj -ant -subj, -subj〉0 → 〈+subj -ant -subj〉0 〈-subj〉1 exp(λinsert)

Non-wh subject merged and complex, merged and lexical, or moved?
〈+subj -t, -subj〉0 → 〈+subj -t〉0 〈-subj〉0 exp(λinsert)
〈+subj -t, -subj〉0 → 〈+subj -t〉0 〈-subj〉1 exp(λinsert)
〈+subj -t, -subj〉0 → 〈+v +subj -t, -v, -subj〉1 exp(λmrg + λv)

Wh-phrase same as moving subject or separated because of doubling?
〈-t, -wh〉0 → 〈+subj -t, -subj -wh〉0 exp(λmrg + λsubj)
〈-t, -wh〉0 → 〈+subj -t, -subj, -wh〉0 exp(λmrg + λsubj)

180 / 201

Easy probabilities Different frameworks Problem #1 Problem #2 Solution: Faithfulness to MG operations

Learned weights on the MG

λt = 0.094350 exp(λt) = 1.0989
λsubj = −5.734063 exp(λv) = 0.0032
λwh = −0.094350 exp(λwh) = 0.9100

λmerge = 0.629109 exp(λmerge) = 1.8759
λmove = −0.629109 exp(λmove) = 0.5331

P(antecedent is lexical) = 0.5
P(antecedent is non-lexical) = 0.5

P(wh-phrase reflexivized) =
exp(λmove)

exp(λmerge) + exp(λmove)
= 0.2213

P(wh-phrase non-reflexivized) =
exp(λmerge)

exp(λmerge) + exp(λmove)
= 0.7787

P(question) =
exp(λmove + λwh)

exp(λmerge + λt) + exp(λmove + λwh)
= 0.1905

P(non-question) =
exp(λmerge + λt)

exp(λmerge + λt) + exp(λmove + λwh)
= 0.8095

P(non-wh subject merged and complex) =
exp(λmerge)

exp(λmerge) + exp(λmerge) + exp(λmove)
= 0.4378

P(non-wh subject merged and lexical) =
exp(λmerge)

exp(λmerge) + exp(λmerge) + exp(λmove)
= 0.4378

P(non-wh subject moved) =
exp(λmove)

exp(λmerge) + exp(λmerge) + exp(λmove)
= 0.1244

P(who will shave) = 0.1905× 0.7787 = 0.148
P(boys will shave themselves) = 0.5× 0.8095× 0.1244 = 0.050

181 / 201

Easy probabilities Different frameworks Problem #1 Problem #2 Solution: Faithfulness to MG operations

Learned weights on the MG

λt = 0.094350 exp(λt) = 1.0989
λsubj = −5.734063 exp(λv) = 0.0032
λwh = −0.094350 exp(λwh) = 0.9100

λmerge = 0.629109 exp(λmerge) = 1.8759
λmove = −0.629109 exp(λmove) = 0.5331

P(antecedent is lexical) = 0.5
P(antecedent is non-lexical) = 0.5

P(wh-phrase reflexivized) =
exp(λmove)

exp(λmerge) + exp(λmove)
= 0.2213

P(wh-phrase non-reflexivized) =
exp(λmerge)

exp(λmerge) + exp(λmove)
= 0.7787

P(question) =
exp(λmove + λwh)

exp(λmerge + λt) + exp(λmove + λwh)
= 0.1905

P(non-question) =
exp(λmerge + λt)

exp(λmerge + λt) + exp(λmove + λwh)
= 0.8095

P(non-wh subject merged and complex) =
exp(λmerge)

exp(λmerge) + exp(λmerge) + exp(λmove)
= 0.4378

P(non-wh subject merged and lexical) =
exp(λmerge)

exp(λmerge) + exp(λmerge) + exp(λmove)
= 0.4378

P(non-wh subject moved) =
exp(λmove)

exp(λmerge) + exp(λmerge) + exp(λmove)
= 0.1244

P(who will shave) = 0.1905× 0.7787 = 0.148
P(boys will shave themselves) = 0.5× 0.8095× 0.1244 = 0.050

181 / 201

Easy probabilities Different frameworks Problem #1 Problem #2 Solution: Faithfulness to MG operations

Learned weights on the MG

λt = 0.094350 exp(λt) = 1.0989
λsubj = −5.734063 exp(λv) = 0.0032
λwh = −0.094350 exp(λwh) = 0.9100

λmerge = 0.629109 exp(λmerge) = 1.8759
λmove = −0.629109 exp(λmove) = 0.5331

P(antecedent is lexical) = 0.5
P(antecedent is non-lexical) = 0.5

P(wh-phrase reflexivized) =
exp(λmove)

exp(λmerge) + exp(λmove)
= 0.2213

P(wh-phrase non-reflexivized) =
exp(λmerge)

exp(λmerge) + exp(λmove)
= 0.7787

P(question) =
exp(λmove + λwh)

exp(λmerge + λt) + exp(λmove + λwh)
= 0.1905

P(non-question) =
exp(λmerge + λt)

exp(λmerge + λt) + exp(λmove + λwh)
= 0.8095

P(non-wh subject merged and complex) =
exp(λmerge)

exp(λmerge) + exp(λmerge) + exp(λmove)
= 0.4378

P(non-wh subject merged and lexical) =
exp(λmerge)

exp(λmerge) + exp(λmerge) + exp(λmove)
= 0.4378

P(non-wh subject moved) =
exp(λmove)

exp(λmerge) + exp(λmerge) + exp(λmove)
= 0.1244

P(who will shave) = 0.1905× 0.7787 = 0.148
P(boys will shave themselves) = 0.5× 0.8095× 0.1244 = 0.050 181 / 201

Easy probabilities Different frameworks Problem #1 Problem #2 Solution: Faithfulness to MG operations

Learned weights on the IMG

λt = 0.723549 exp(λt) = 2.0617
λv = 0.440585 exp(λv) = 1.5536
λwh = −0.723459 exp(λwh) = 0.4850

λinsert = 0.440585 exp(λinsert) = 1.5536
λmrg = −0.440585 exp(λmrg) = 0.6437

P(antecedent is lexical) = 0.5
P(antecedent is non-lexical) = 0.5

P(wh-phrase reflexivized) = 0.5
P(wh-phrase non-reflexivized) = 0.5

P(question) =
exp(λmrg + λwh)

exp(λmrg + λt) + exp(λmrg + λwh)
=

exp(λwh)

exp(λt) + exp(λwh)
= 0.1905

P(non-question) =
exp(λmrg + λt)

exp(λmrg + λt) + exp(λmrg + λwh)
=

exp(λt)

exp(λt) + exp(λwh)
= 0.8095

P(non-wh subject merged and lexical) =
exp(λinsert)

exp(λinsert) + exp(λinsert) + exp(λmrg + λv)
= 0.4412

P(non-wh subject merged and complex) =
exp(λinsert)

exp(λinsert) + exp(λinsert) + exp(λmrg + λv)
= 0.4412

P(non-wh subject moved) =
exp(λmrg + λv)

exp(λinsert) + exp(λinsert) + exp(λmrg + λv)
= 0.1176

P(who will shave) = 0.5× 0.1905 = 0.095
P(boys will shave themselves) = 0.5× 0.8095× 0.1176 = 0.048

182 / 201

Easy probabilities Different frameworks Problem #1 Problem #2 Solution: Faithfulness to MG operations

Learned weights on the IMG

λt = 0.723549 exp(λt) = 2.0617
λv = 0.440585 exp(λv) = 1.5536
λwh = −0.723459 exp(λwh) = 0.4850

λinsert = 0.440585 exp(λinsert) = 1.5536
λmrg = −0.440585 exp(λmrg) = 0.6437

P(antecedent is lexical) = 0.5
P(antecedent is non-lexical) = 0.5

P(wh-phrase reflexivized) = 0.5
P(wh-phrase non-reflexivized) = 0.5

P(question) =
exp(λmrg + λwh)

exp(λmrg + λt) + exp(λmrg + λwh)
=

exp(λwh)

exp(λt) + exp(λwh)
= 0.1905

P(non-question) =
exp(λmrg + λt)

exp(λmrg + λt) + exp(λmrg + λwh)
=

exp(λt)

exp(λt) + exp(λwh)
= 0.8095

P(non-wh subject merged and lexical) =
exp(λinsert)

exp(λinsert) + exp(λinsert) + exp(λmrg + λv)
= 0.4412

P(non-wh subject merged and complex) =
exp(λinsert)

exp(λinsert) + exp(λinsert) + exp(λmrg + λv)
= 0.4412

P(non-wh subject moved) =
exp(λmrg + λv)

exp(λinsert) + exp(λinsert) + exp(λmrg + λv)
= 0.1176

P(who will shave) = 0.5× 0.1905 = 0.095
P(boys will shave themselves) = 0.5× 0.8095× 0.1176 = 0.048

182 / 201

Easy probabilities Different frameworks Problem #1 Problem #2 Solution: Faithfulness to MG operations

Learned weights on the IMG

λt = 0.723549 exp(λt) = 2.0617
λv = 0.440585 exp(λv) = 1.5536
λwh = −0.723459 exp(λwh) = 0.4850

λinsert = 0.440585 exp(λinsert) = 1.5536
λmrg = −0.440585 exp(λmrg) = 0.6437

P(antecedent is lexical) = 0.5
P(antecedent is non-lexical) = 0.5

P(wh-phrase reflexivized) = 0.5
P(wh-phrase non-reflexivized) = 0.5

P(question) =
exp(λmrg + λwh)

exp(λmrg + λt) + exp(λmrg + λwh)
=

exp(λwh)

exp(λt) + exp(λwh)
= 0.1905

P(non-question) =
exp(λmrg + λt)

exp(λmrg + λt) + exp(λmrg + λwh)
=

exp(λt)

exp(λt) + exp(λwh)
= 0.8095

P(non-wh subject merged and lexical) =
exp(λinsert)

exp(λinsert) + exp(λinsert) + exp(λmrg + λv)
= 0.4412

P(non-wh subject merged and complex) =
exp(λinsert)

exp(λinsert) + exp(λinsert) + exp(λmrg + λv)
= 0.4412

P(non-wh subject moved) =
exp(λmrg + λv)

exp(λinsert) + exp(λinsert) + exp(λmrg + λv)
= 0.1176

P(who will shave) = 0.5× 0.1905 = 0.095
P(boys will shave themselves) = 0.5× 0.8095× 0.1176 = 0.048

182 / 201

Easy probabilities Different frameworks Problem #1 Problem #2 Solution: Faithfulness to MG operations

Surprisal predictions

Grammar: MGshave
Sentence: ‘who will shave themselves’

MGshave, i.e. merge and move distinct

0.35478 boys will shave
0.35478 some boys will shave
0.14801 who will shave
0.05022 boys will shave themselves
0.05022 some boys will shave themselves
0.04199 who will shave themselves

surprisal at ‘who’ = − log P(W1 = who)
= − log(0.15 + 0.04)
= − log 0.19
= 2.4

surprisal at ‘themselves’ = − log P(W4 = themselves | W1 = who, . . .)

= − log
0.04

0.15 + 0.04
= − log 0.21
= 2.2

0

1

2

3

wh
o wil

l
sha
ve

the
ms
elv
es

183 / 201

Easy probabilities Different frameworks Problem #1 Problem #2 Solution: Faithfulness to MG operations

Surprisal predictions

Grammar: MGshave
Sentence: ‘who will shave themselves’

MGshave, i.e. merge and move distinct

0.35478 boys will shave
0.35478 some boys will shave
0.14801 who will shave
0.05022 boys will shave themselves
0.05022 some boys will shave themselves
0.04199 who will shave themselves

surprisal at ‘who’ = − log P(W1 = who)
= − log(0.15 + 0.04)
= − log 0.19
= 2.4

surprisal at ‘themselves’ = − log P(W4 = themselves | W1 = who, . . .)

= − log
0.04

0.15 + 0.04
= − log 0.21
= 2.2

0

1

2

3

wh
o wil

l
sha
ve

the
ms
elv
es

183 / 201

Easy probabilities Different frameworks Problem #1 Problem #2 Solution: Faithfulness to MG operations

Surprisal predictions

Grammar: IMGshave
Sentence: ‘who will shave themselves’

IMGshave, i.e. merge and move unified

0.35721 boys will shave
0.35721 some boys will shave
0.095 who will shave
0.095 who will shave themselves
0.04779 boys will shave themselves
0.04779 some boys will shave themselves

surprisal at ‘who’ = − log P(W1 = who)
= − log(0.10 + 0.10)
= − log 0.2
= 2.3

surprisal at ‘themselves’ = − log P(W4 = themselves | W1 = who, . . .)

= − log
0.10

0.10 + 0.10
= − log 0.5
= 1

0

1

2

3

wh
o wil

l
sha
ve

the
ms
elv
es

184 / 201

Easy probabilities Different frameworks Problem #1 Problem #2 Solution: Faithfulness to MG operations

Surprisal predictions

Grammar: IMGshave
Sentence: ‘who will shave themselves’

IMGshave, i.e. merge and move unified

0.35721 boys will shave
0.35721 some boys will shave
0.095 who will shave
0.095 who will shave themselves
0.04779 boys will shave themselves
0.04779 some boys will shave themselves

surprisal at ‘who’ = − log P(W1 = who)
= − log(0.10 + 0.10)
= − log 0.2
= 2.3

surprisal at ‘themselves’ = − log P(W4 = themselves | W1 = who, . . .)

= − log
0.10

0.10 + 0.10
= − log 0.5
= 1

0

1

2

3

wh
o wil

l
sha
ve

the
ms
elv
es

184 / 201

Part 1: Grammars and cognitive hypotheses
What is a grammar?
What can grammars do?
Concrete illustration of a target: Surprisal

Parts 2–4: Assembling the pieces
Minimalist Grammars (MGs)
MGs and MCFGs
Probabilities on MGs

Part 5: Learning and wrap-up
Something slightly different: Learning model
Recap and open questions

Sharpening the empirical claims of generative syntax
through formalization

Tim Hunter — ESSLLI, August 2015

Part 5

Learning and wrap-up

Grammatical formalisms and learning Learning with a given grammar Learning with a choice of grammars Conclusion

Motivating question

Components of a learner:

A formalism (“toolkit”) defines a space of grammars for a learner to choose
from
An updating algorithm defines a way to search through such a space
(in response to provided input)

Given two formalisms, F1 and F2, can we construct a learner which

reaches one end-state when used with F1, and
reaches a different end-state when used with F2?

With everything else held fixed:

same (strong) generative capacity
same updating algorithm
same training data

187 / 201

Grammatical formalisms and learning Learning with a given grammar Learning with a choice of grammars Conclusion

Motivating question

Components of a learner:

A formalism (“toolkit”) defines a space of grammars for a learner to choose
from
An updating algorithm defines a way to search through such a space
(in response to provided input)

Given two formalisms, F1 and F2, can we construct a learner which

reaches one end-state when used with F1, and
reaches a different end-state when used with F2?

With everything else held fixed:

same (strong) generative capacity
same updating algorithm
same training data

187 / 201

Grammatical formalisms and learning Learning with a given grammar Learning with a choice of grammars Conclusion

Motivating question

Components of a learner:

A formalism (“toolkit”) defines a space of grammars for a learner to choose
from
An updating algorithm defines a way to search through such a space
(in response to provided input)

Given two formalisms, F1 and F2, can we construct a learner which

reaches one end-state when used with F1, and
reaches a different end-state when used with F2?

With everything else held fixed:

same (strong) generative capacity
same updating algorithm
same training data

187 / 201

Grammatical formalisms and learning Learning with a given grammar Learning with a choice of grammars Conclusion

Outline

18 Grammatical formalisms and learning

19 Learning with a given grammar

20 Learning with a choice of grammars

21 Conclusion

188 / 201

Grammatical formalisms and learning Learning with a given grammar Learning with a choice of grammars Conclusion

Outline

18 Grammatical formalisms and learning

19 Learning with a given grammar

20 Learning with a choice of grammars

21 Conclusion

189 / 201

Grammatical formalisms and learning Learning with a given grammar Learning with a choice of grammars Conclusion

Formalism F1

G1

G2

G3

Formalism F2

G ′1

G ′2

G ′3

A “good sentence vs. bad sentence” learner will treat these two formalisms equivalently —
it won’t “see” the internal differences in how they generate what they generate.

(Gibson and Wexler 1994)

Q: How can we provide traction between the learning algorithm and the internals of each
G?

A: Probabilities

190 / 201

Grammatical formalisms and learning Learning with a given grammar Learning with a choice of grammars Conclusion

Formalism F1

G1

G2

G3

Formalism F2

G ′1

G ′2

G ′3

A “good sentence vs. bad sentence” learner will treat these two formalisms equivalently —
it won’t “see” the internal differences in how they generate what they generate.

(Gibson and Wexler 1994)

Q: How can we provide traction between the learning algorithm and the internals of each
G?

A: Probabilities

190 / 201

Grammatical formalisms and learning Learning with a given grammar Learning with a choice of grammars Conclusion

Formalism F1

G1

G2

G3

Formalism F2

G ′1

G ′2

G ′3

A “good sentence vs. bad sentence” learner will treat these two formalisms equivalently —
it won’t “see” the internal differences in how they generate what they generate.

(Gibson and Wexler 1994)

Q: How can we provide traction between the learning algorithm and the internals of each
G?
A: Probabilities

190 / 201

Grammatical formalisms and learning Learning with a given grammar Learning with a choice of grammars Conclusion

Formalism F1

G1

G2

G3

Formalism F2

G ′1

G ′2

G ′3

A “good sentence vs. bad sentence” learner will treat these two formalisms equivalently —
it won’t “see” the internal differences in how they generate what they generate.

(Gibson and Wexler 1994)

Q: How can we provide traction between the learning algorithm and the internals of each
G?
A: Probabilities

190 / 201

Grammatical formalisms and learning Learning with a given grammar Learning with a choice of grammars Conclusion

Outline

18 Grammatical formalisms and learning

19 Learning with a given grammar

20 Learning with a choice of grammars

21 Conclusion

191 / 201

Grammatical formalisms and learning Learning with a given grammar Learning with a choice of grammars Conclusion

Learning scenario

Training corpus: some combination of occurrences of the following.

boys will shave boys will shave themselves
who will shave who will shave themselves
foo boys will shave

The learner knows correct analyses of these sentences, with ‘foo’ as a
determiner.
The learner must decide what probabilities to attach to these known sentences.

192 / 201

Grammatical formalisms and learning Learning with a given grammar Learning with a choice of grammars Conclusion

MGs
G

ĝ

IMGs
G

ĝ

Training corpus:
10 boys will shave
2 boys will shave themselves
3 who will shave
1 who will shave themselves
5 foo boys will shave

193 / 201

Grammatical formalisms and learning Learning with a given grammar Learning with a choice of grammars Conclusion

MGs
G

ĝ

IMGs
G

ĝ

Training corpus:
10 boys will shave
2 boys will shave themselves
3 who will shave
1 who will shave themselves
5 foo boys will shave

193 / 201

Grammatical formalisms and learning Learning with a given grammar Learning with a choice of grammars Conclusion

MGs
G

ĝ

IMGs
G

ĝ

Training corpus:
10 boys will shave
2 boys will shave themselves
3 who will shave
1 who will shave themselves
5 foo boys will shave

Grammar’s distribution:
0.35478 boys will shave
0.35478 foo boys will shave
0.14801 who will shave
0.05022 boys will shave themselves
0.05022 foo boys will shave themselves
0.04199 who will shave themselves

Grammar’s distribution:
0.35721 boys will shave
0.35721 foo boys will shave
0.095 who will shave
0.095 who will shave themselves
0.04779 boys will shave themselves
0.04779 foo boys will shave themselves

193 / 201

Grammatical formalisms and learning Learning with a given grammar Learning with a choice of grammars Conclusion

MGs
G

ĝ

IMGs
G

ĝ

Training corpus:
10 boys will shave
2 boys will shave themselves
3 who will shave
1 who will shave themselves
5 foo boys will shave

Entropy Entropy Reduction
— 2.09 —
who 0.76 1.33
will 0.76 0.00
shave 0.76 0.00
themselves 0.00 0.76

Entropy Entropy Reduction
— 2.28 —
who 1.00 1.28
will 1.00 0.00
shave 1.00 0.00
themselves 0.00 1.00

193 / 201

Grammatical formalisms and learning Learning with a given grammar Learning with a choice of grammars Conclusion

Outline

18 Grammatical formalisms and learning

19 Learning with a given grammar

20 Learning with a choice of grammars

21 Conclusion

194 / 201

Grammatical formalisms and learning Learning with a given grammar Learning with a choice of grammars Conclusion

Learning scenario

Training corpus: some combination of occurrences of the following.

boys will shave boys will shave themselves
who will shave who will shave themselves
foo boys will shave

The learner knows correct analyses of wh-movement and reflexives.
The learner must decide how to analyze ‘foo’: determiner or wh-phrase?

195 / 201

Grammatical formalisms and learning Learning with a given grammar Learning with a choice of grammars Conclusion

Learning scenario

Training corpus: some combination of occurrences of the following.

boys will shave boys will shave themselves
who will shave who will shave themselves
foo boys will shave

The learner knows correct analyses of wh-movement and reflexives.

The learner must decide how to analyze ‘foo’: determiner or wh-phrase?

CP

TP

T′

VP

shave

will

who

CP

TP

T′

VP

[themselves]shave

will

boys

195 / 201

Grammatical formalisms and learning Learning with a given grammar Learning with a choice of grammars Conclusion

Learning scenario

Training corpus: some combination of occurrences of the following.

boys will shave boys will shave themselves
who will shave who will shave themselves
foo boys will shave

The learner knows correct analyses of wh-movement and reflexives.
The learner must decide how to analyze ‘foo’: determiner or wh-phrase?

CP

TP

T′

VP

shave

will

[foo boys]

CP

TP

T′

VP

shave

will

boys

foo

195 / 201

Grammatical formalisms and learning Learning with a given grammar Learning with a choice of grammars Conclusion

MGs

G G

ĝDET

MG-DET

ĝWH

MG-WH

IMGs

G G

ĝDET

IMG-DET

ĝWH

IMG-WH

196 / 201

Grammatical formalisms and learning Learning with a given grammar Learning with a choice of grammars Conclusion

MGs

G G

ĝDET

MG-DET

ĝWH

MG-WH

IMGs

G G

ĝDET

IMG-DET

ĝWH

IMG-WH

Training corpus:
5 boys will shave
5 boys will shave themselves
5 who will shave
5 who will shave themselves
5 foo boys will shave

P(D|ĝDET)

P(D|ĝWH)
=

3.36× 10−18

4.48× 10−20
= 75.0 P(D|ĝDET)

P(D|ĝWH)
=

3.36× 10−18

2.45× 10−19
= 13.7

196 / 201

Grammatical formalisms and learning Learning with a given grammar Learning with a choice of grammars Conclusion

MGs

G G

ĝDET

MG-DET

ĝWH

MG-WH

IMGs

G G

ĝDET

IMG-DET

ĝWH

IMG-WH

Training corpus:
5 boys will shave
5 boys will shave themselves
5 who will shave
5 who will shave themselves
5 foo boys will shave

P(D|ĝDET)

P(D|ĝWH)
=

3.36× 10−18

4.48× 10−20
= 75.0

P(D|ĝDET)

P(D|ĝWH)
=

3.36× 10−18

2.45× 10−19
= 13.7

196 / 201

Grammatical formalisms and learning Learning with a given grammar Learning with a choice of grammars Conclusion

MGs

G G

ĝDET

MG-DET

ĝWH

MG-WH

IMGs

G G

ĝDET

IMG-DET

ĝWH

IMG-WH

Training corpus:
5 boys will shave
5 boys will shave themselves
5 who will shave
5 who will shave themselves
5 foo boys will shave

P(D|ĝDET)

P(D|ĝWH)
=

3.36× 10−18

4.48× 10−20
= 75.0 P(D|ĝDET)

P(D|ĝWH)
=

3.36× 10−18

2.45× 10−19
= 13.7

196 / 201

Grammatical formalisms and learning Learning with a given grammar Learning with a choice of grammars Conclusion

MGs

G G

ĝDET

MG-DET

ĝWH

MG-WH

IMGs

G G

ĝDET

IMG-DET

ĝWH

IMG-WH

Training corpus:
18 boys will shave
3 boys will shave themselves
1 who will shave
1 who will shave themselves
1 foo boys will shave

P(D|ĝDET)

P(D|ĝWH)
=

5.82× 10−14

7.27× 10−11
= 0.000801 P(D|ĝDET)

P(D|ĝWH)
=

7.64× 10−14

6.85× 10−10
= 0.000112

196 / 201

Grammatical formalisms and learning Learning with a given grammar Learning with a choice of grammars Conclusion

MGs

G G

ĝDET

MG-DET

ĝWH

MG-WH

IMGs

G G

ĝDET

IMG-DET

ĝWH

IMG-WH

Training corpus:
1 boys will shave
1 boys will shave themselves
8 who will shave
8 who will shave themselves
8 foo boys will shave

P(D|ĝDET)

P(D|ĝWH)
=

1.21× 10−17

7.70× 10−19
= 15.7 P(D|ĝDET)

P(D|ĝWH)
=

3.46× 10−17

1.19× 10−16
= 0.291

196 / 201

Grammatical formalisms and learning Learning with a given grammar Learning with a choice of grammars Conclusion

MGs

G G

ĝDET

MG-DET

ĝWH

MG-WH

IMGs

G G

ĝDET

IMG-DET

ĝWH

IMG-WH

Training corpus:
8 boys will shave
1 boys will shave themselves

12 who will shave
1 who will shave themselves
4 foo boys will shave

P(D|ĝDET)

P(D|ĝWH)
=

2.83× 10−15

4.36× 10−20
= 64900 P(D|ĝDET)

P(D|ĝWH)
=

1.31× 10−17

1.75× 10−17
= 0.749

196 / 201

Grammatical formalisms and learning Learning with a given grammar Learning with a choice of grammars Conclusion

MGs

G G

ĝDET

MG-DET

ĝWH

MG-WH

IMGs

G G

ĝDET

IMG-DET

ĝWH

IMG-WH

Training corpus:
10 boys will shave
2 boys will shave themselves
3 who will shave
1 who will shave themselves
5 foo boys will shave

P(D|ĝDET)

P(D|ĝWH)
=

2.44× 10−13

4.94× 10−14
= 4.94 P(D|ĝDET)

P(D|ĝWH)
=

1.46× 10−13

1.62× 10−13
= 0.901

196 / 201

Grammatical formalisms and learning Learning with a given grammar Learning with a choice of grammars Conclusion

Details of one interesting case

MG-WH

Feature weight: ant=0.000000
Feature weight: obj=0.000000
Feature weight: subj=0.306077
Feature weight: t=-0.895880
Feature weight: v=0.000000
Feature weight: wh=0.895880
Feature weight: merge=-0.000000
Feature weight: move=-0.000000
{t29: 0.5, t13_t4: 0.5}
{t28: 0.5, t13_t5: 0.5}
{t0_t14: 0.077, t21_t7: 0.462, t22: 0.462}

t0 : (:: =t c)
t4 : (:: subj)
t5 : (:: subj -wh)
t7 : (:: wh)
t13 : (: =subj t)
t14 : (: t)
t21 : (: =wh c)
t22 : (: +wh c;: -wh)
t28 : (: +subj t;: -subj;: -wh)
t29 : (: +subj t;: -subj)

IMG-WH

Feature weight: ant=0.000000
Feature weight: obj=0.000000
Feature weight: subj=-0.860545
Feature weight: t=-0.434630
Feature weight: v=-3.324996
Feature weight: wh=2.050275
Feature weight: insert=-0.563888
Feature weight: merge=0.563888
{t00130005: 0.5, t0028: 0.5}
{t0021_t0007: 0.333, t00010016: 0.667}
{t00000014: 0.077, t0022: 0.923}
{t0013_t0004: 0.900, t00110026: 0.100}

t00000014 : (:: +t -c;: -t)
t00010016 : (:: +t +wh -c;: -t;: -wh)
t0004 : (:: -subj)
t0007 : (:: -wh)
t00110026 : (:: +v +subj -t;: -v;: -subj)
t0013 : (: +subj -t)
t00130005 : (: +subj -t;: -subj -wh)
t0021 : (: +wh -c)
t0022 : (: +wh -c;: -wh)
t0028 : (: +subj -t;: -subj;: -wh)

197 / 201

Grammatical formalisms and learning Learning with a given grammar Learning with a choice of grammars Conclusion

Outline

18 Grammatical formalisms and learning

19 Learning with a given grammar

20 Learning with a choice of grammars

21 Conclusion

198 / 201

Grammatical formalisms and learning Learning with a given grammar Learning with a choice of grammars Conclusion

What we’ve done (I hope)

If we accept — as I do — . . . that the rules of grammar enter into the
processing mechanisms, then evidence concerning production, recognition,
recall, and language use in general can be expected (in principle) to have
bearing on the investigation of rules of grammar, on what is sometimes
called “grammatical competence” or “knowledge of language”.

(Chomsky 1980: pp.200-201)

The psychological plausibility of a transformational model of the
language user would be strengthened, of course, if it could be shown that
our performance on tasks requiring an appreciation of the structure of
transformed sentences is some function of the nature, number and
complexity of the grammatical transformations involved.

(Miller and Chomsky 1963: p.481)

199 / 201

Grammatical formalisms and learning Learning with a given grammar Learning with a choice of grammars Conclusion

What we’ve done (I hope)

There are ways to have “purely derivational” properties of formalisms make a
difference to predictions about sentence processing complexity and generalization
in learning

. . . without saying anything about real-time mental operations

. . . (let alone saying that things like merge and move happen in real time).
Instead, the derivation tree is the object to be recovered/identified.

As mentioned above, the MP as a syntactic theory appears to be a step
backwards for psycholinguistics (although perhaps not for syntacticians,
of course). One of the fundamental problems is that the model derives a
tree starting from all the lexical items and working up to the top-most
node, which obviously is difficult to reconcile with left-to-right
incremental parsing

Ferreira (2005: p.369)

What we’ve done of course leaves questions about real-time operations
unanswered.
But it’s not clear that there is a conflict that needs to be “reconciled”.

200 / 201

Grammatical formalisms and learning Learning with a given grammar Learning with a choice of grammars Conclusion

What we’ve done (I hope)

There are ways to have “purely derivational” properties of formalisms make a
difference to predictions about sentence processing complexity and generalization
in learning

. . . without saying anything about real-time mental operations

. . . (let alone saying that things like merge and move happen in real time).

Instead, the derivation tree is the object to be recovered/identified.

As mentioned above, the MP as a syntactic theory appears to be a step
backwards for psycholinguistics (although perhaps not for syntacticians,
of course). One of the fundamental problems is that the model derives a
tree starting from all the lexical items and working up to the top-most
node, which obviously is difficult to reconcile with left-to-right
incremental parsing

Ferreira (2005: p.369)

What we’ve done of course leaves questions about real-time operations
unanswered.
But it’s not clear that there is a conflict that needs to be “reconciled”.

200 / 201

Grammatical formalisms and learning Learning with a given grammar Learning with a choice of grammars Conclusion

What we’ve done (I hope)

There are ways to have “purely derivational” properties of formalisms make a
difference to predictions about sentence processing complexity and generalization
in learning

. . . without saying anything about real-time mental operations

. . . (let alone saying that things like merge and move happen in real time).
Instead, the derivation tree is the object to be recovered/identified.

As mentioned above, the MP as a syntactic theory appears to be a step
backwards for psycholinguistics (although perhaps not for syntacticians,
of course). One of the fundamental problems is that the model derives a
tree starting from all the lexical items and working up to the top-most
node, which obviously is difficult to reconcile with left-to-right
incremental parsing

Ferreira (2005: p.369)

What we’ve done of course leaves questions about real-time operations
unanswered.
But it’s not clear that there is a conflict that needs to be “reconciled”.

200 / 201

Grammatical formalisms and learning Learning with a given grammar Learning with a choice of grammars Conclusion

What we’ve done (I hope)

There are ways to have “purely derivational” properties of formalisms make a
difference to predictions about sentence processing complexity and generalization
in learning

. . . without saying anything about real-time mental operations

. . . (let alone saying that things like merge and move happen in real time).
Instead, the derivation tree is the object to be recovered/identified.

As mentioned above, the MP as a syntactic theory appears to be a step
backwards for psycholinguistics (although perhaps not for syntacticians,
of course). One of the fundamental problems is that the model derives a
tree starting from all the lexical items and working up to the top-most
node, which obviously is difficult to reconcile with left-to-right
incremental parsing

Ferreira (2005: p.369)

What we’ve done of course leaves questions about real-time operations
unanswered.
But it’s not clear that there is a conflict that needs to be “reconciled”.

200 / 201

Grammatical formalisms and learning Learning with a given grammar Learning with a choice of grammars Conclusion

What we’ve done (I hope)

There are ways to have “purely derivational” properties of formalisms make a
difference to predictions about sentence processing complexity and generalization
in learning

. . . without saying anything about real-time mental operations

. . . (let alone saying that things like merge and move happen in real time).
Instead, the derivation tree is the object to be recovered/identified.

As mentioned above, the MP as a syntactic theory appears to be a step
backwards for psycholinguistics (although perhaps not for syntacticians,
of course). One of the fundamental problems is that the model derives a
tree starting from all the lexical items and working up to the top-most
node, which obviously is difficult to reconcile with left-to-right
incremental parsing

Ferreira (2005: p.369)

What we’ve done of course leaves questions about real-time operations
unanswered.
But it’s not clear that there is a conflict that needs to be “reconciled”.

200 / 201

Grammatical formalisms and learning Learning with a given grammar Learning with a choice of grammars Conclusion

Open questions

How realistic is the assumption that there are a finite number of derivational
states?

MGs’ SMC vs. mainstream “minimality”
Dependencies over arbitrary distances (e.g. Condition C, NPIs)
. . . ?

Local vs. global normalization

201 / 201

References I

Billot, S. and Lang, B. (1989). The structure of shared forests in ambiguous parsing. In Proceedings of
the 1989 Meeting of the Association of Computational Linguistics.

Chomsky, N. (1965). Aspects of the Theory of Syntax. MIT Press, Cambridge, MA.

Chomsky, N. (1980). Rules and Representations. Columbia University Press, New York.

Ferreira, F. (2005). Psycholinguistics, formal grammars, and cognitive science. The Linguistic Review,
22:365–380.

Frazier, L. and Clifton, C. (1996). Construal. MIT Press, Cambridge, MA.

Gärtner, H.-M. and Michaelis, J. (2010). On the Treatment of Multiple-Wh Interrogatives in
Minimalist Grammars. In Hanneforth, T. and Fanselow, G., editors, Language and Logos, pages
339–366. Akademie Verlag, Berlin.

Gibson, E. and Wexler, K. (1994). Triggers. Linguistic Inquiry, 25:407–454.

Hale, J. (2006). Uncertainty about the rest of the sentence. Cognitive Science, 30:643–Âŋ672.

Hale, J. T. (2001). A probabilistic earley parser as a psycholinguistic model. In Proceedings of the
Second Meeting of the North American Chapter of the Association for Computational Linguistics.

Hunter, T. (2011). Insertion Minimalist Grammars: Eliminating redundancies between merge and
move. In Kanazawa, M., Kornai, A., Kracht, M., and Seki, H., editors, The Mathematics of
Language (MOL 12 Proceedings), volume 6878 of LNCS, pages 90–107, Berlin Heidelberg. Springer.

Hunter, T. and Dyer, C. (2013). Distributions on minimalist grammar derivations. In Proceedings of
the 13th Meeting on the Mathematics of Language.

References II

Koopman, H. and Szabolcsi, A. (2000). Verbal Complexes. MIT Press, Cambridge, MA.

Lang, B. (1988). Parsing incomplete sentences. In Proceedings of the 12th International Conference on
Computational Linguistics, pages 365–371.

Levy, R. (2008). Expectation-based syntactic comprehension. Cognition, 106(3):1126–1177.

Michaelis, J. (2001). Derivational minimalism is mildly context-sensitive. In Moortgat, M., editor,
Logical Aspects of Computational Linguistics, volume 2014 of LNCS, pages 179–198. Springer,
Berlin Heidelberg.

Miller, G. A. and Chomsky, N. (1963). Finitary models of language users. In Luce, R. D., Bush, R. R.,
and Galanter, E., editors, Handbook of Mathematical Psychology, volume 2. Wiley and Sons, New
York.

Morrill, G. (1994). Type Logical Grammar: Categorial Logic of Signs. Kluwer, Dordrecht.

Nederhof, M. J. and Satta, G. (2008). Computing partition functions of pcfgs. Research on Language
and Computation, 6(2):139–162.

Seki, H., Matsumara, T., Fujii, M., and Kasami, T. (1991). On multiple context-free grammars.
Theoretical Computer Science, 88:191–229.

Stabler, E. P. (2006). Sidewards without copying. In Wintner, S., editor, Proceedings of The 11th
Conference on Formal Grammar, pages 157–170, Stanford, CA. CSLI Publications.

Stabler, E. P. (2011). Computational perspectives on minimalism. In Boeckx, C., editor, The Oxford
Handbook of Linguistic Minimalism. Oxford University Press, Oxford.

Stabler, E. P. and Keenan, E. L. (2003). Structural similarity within and among languages. Theoretical
Computer Science, 293:345–363.

References III

Vijay-Shanker, K., Weir, D. J., and Joshi, A. K. (1987). Characterizing structural descriptions produced
by various grammatical formalisms. In Proceedings of the 25th Meeting of the Association for
Computational Linguistics, pages 104–111.

Weir, D. (1988). Characterizing mildly context-sensitive grammar formalisms. PhD thesis, University of
Pennsylvania.

Yngve, V. H. (1960). A model and an hypothesis for language structure. In Proceedings of the
American Philosophical Society, volume 104, pages 444–466.

	Grammars and Cognitive Hypotheses
	What we want to do with grammars
	How to get grammars to do it
	Derivations and representations
	Information-theoretic complexity metrics

	Minimalist Grammars
	Notation and Basics
	Example fragment
	Loops and ``derivational state''
	Derivation trees

	MGs and MCFGs
	A different perspective on CFGs
	Concatenative and non-concatenative operations
	MCFGs
	Back to MGs

	Probabilities on MG Derivations
	Easy probabilities with context-free structure
	Different frameworks
	Problem #1 with the naive parametrization
	Problem #2 with the naive parametrization
	Solution: Faithfulness to MG operations

	Learning and wrap-up
	Grammatical formalisms and learning
	Learning with a given grammar
	Learning with a choice of grammars
	Conclusion

